
36-709, Spring 2019
Homework 1

Due Feb 5, by 5:00pm in JaeHyeok’s mailbox.

1. Some simple but surprising facts about high-dimensional uniform distributions.

(a) Let X be a random vector in Rd that is uniformly distributed on the Euclidean unit ball
{x ∈ Rd : ‖x‖ ≤ 1}. Show that

E[‖X‖] =
d

d+ 1
.

(b) Let X be a random vector in Rd that is uniformly distributed on the unit cube [−1, 1]d = {x ∈
Rd : ‖x‖∞ ≤ 1}. Show that, for any ε ∈ (0, 1),

lim
d→∞

P

(√
d

3
(1− ε) ≤ ‖X‖ ≤

√
d

3
(1 + ε)

)
= 1.

Hint: the simplest strategy is to us the WLLN.

2. Reading exercise. Not to be graded for correctness, but only for effort. In this problem
you are essentially required to reproduce a proof that can be found in the references given below.
My intention is for you to read up and understand the proof rather than trying to solve this problem
on your own, which would be challenging (though you are welcome to this challenge). Let X =
(X1, . . . , Xd) ∈ Rd be a zero-mean random vector with covariance matrix Σ such that Xi√

Σi,i
is sub-

Gaussian with parameter σ2, for all i = 1, . . . , d. Assume we observe n i.i.d. copies of X and compute
the empirical covariance matrix Σ̂ = 1

n

∑n
i=1X

>
i Xi

1. Show that, for all i, j ∈ {1, . . . , d},

P
(∣∣∣Σ̂i,j − Σi,j

∣∣∣ > ε
)
≤ C1e

−ε2nC2 ,

for some constants C1 and C2. Conclude that

max
i,j

∣∣∣Σ̂i,j − Σi,j

∣∣∣ = O

(√
log d+ log n

n

)
,

with probability at least 1− 1
n . Thus, estimation of the covariance matrix in the L∞ norm is possible

even when d is much larger then n. Of course, you may wonder whether this is a good enough
guarantee. In few weeks we will look at consistency rates for covariance estimation under more
sensible norms and we will see that the requirements on d are much more stringent.

You will definitely need to use the results in Problem 8 and you may want to take a look at these
references:

• Lemma 12 in Yuan. M. (2010). High Dimensional Inverse Covariance Matrix Estimation via
Linear Programming, JMLR, 11, 2261-2286.

• Lemma 1 in Ravikumar, P., Wainwright, M.J., Raskutti, G. and Yu, B. (2011). EJS, 5, 935-980.

1If mean of each Xi were not zero, then we would use Σ̂ = 1
n

∑n
i=1(Xi −Xn)>(XiXn) instead. We would obtain the same

rate but the arguments would be slightly more complicated.
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• Lemma A.3 in Bickel, P.J. and Levina, E. (2008). Regularized estimation of large covariance
matrices, teh Annals of Statistics, 36(1), 199-227.

3. Moments versus Cernoff bounds. Show that moment bounds for tail probabilities are always
better than Cramér–Chernoff bounds. More precisely, let Y be a nonnegative random variable and let
t > 0. The best moment bound for the tail probability PY ≥ t is minq E[Y q]t–q where the minimum
is taken over all positive integers. The best Cramér–Chernoff bound is infλ>0 Eeλ(Y –t). Prove that

min
q

E[Y q]t–q ≤ inf
λ>0

Eeλ(Y –t).

(See Philips, T.K. and Nelson, R. (1995). The moment bound is tighter than Chernoff’s bound for
positive tail probabilities. The American Statistician, 49, 175—178.)

4. From tail bounds to moment bounds and high probability bounds. In this exercise, you
may think of the random variable X below as an average of n independent random variables, though
this is not necessarily the case.

(a) Suppose that the random variable X has mean zero and satisfies the inequality

P (|X| ≥ t) ≤ c1e
−c2nta , ∀t > 0

where a ∈ {1, 2}, n is a positive integer and c1 and c2 are positive numbers.

i. Show that, when a = 2, V[X] ≤ c1
nc2

.

ii. Show that
E [|X|] ≤ c3n

−1/a

and express c3 as a function of c1 and c2.

(b) (From Hoeffding/Bernstein exponential inequality to high probability bounds). Suppose that,
for all t > 0, some constants a > 0, b > 0, c > 0 and a d ≥ 0 and a positive integer n, the
random variable X is such that

P (|X| ≥ t) ≤ aexp

{
− nbt2

c+ dt

}
.

Then show that, for any δ ∈ (0, 1),

|X| ≤
√

c

nb
ln
a

δ
+

d

nb
ln
a

δ
,

with probability at least 1− δ.
If the above exponential inequality holds for X − θ instead of just X, where θ is a number
(e.g., the mean or median of X), then the last bound would immediately give a 1− δ confidence
interval for θ.

5. Vectors in high-dimensions. The results in this exercise provide the conceptual basis for the 2005
paper Geometric representation of high dimension, low sample size data, by Peter Hall, J. S. Marron
and Amnon Neeman, published in the Journal of the Royal Statistical Society, Series B (Statistical
Methodology), Vol. 67, No. 3, pp. 427-444. This paper is regarded by some as a seminal contribution
to high-dimensional statistics. Check it out (especially sections 1 through 3).
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(a) Let X ∼ Nd(0, Id), where Id is the d-dimensional identity matrix. Then, ‖X‖2 =
∑d

i=1X
2
i ∼ χ2

d.
Show that, for any ε ∈ (0, 1)

P
(∣∣‖X‖2 − d∣∣ ≥ dε) ≤ 2e−dε

2/8.

You can use the following fact: the moment generating function of a χ2
d is (1 − 2λ)−d/2 for

all λ < 1/2. Alternatively, use the version of Bernstein inequality for sum of sub-exponential
variables given in class. This results says that, in high dimensions, X is concentrated around a
sphere of radius

√
d. Informaly, ‖X‖ ∼

√
d with high probability.

See, e.g., Lemma 2 in A Probabilistic Analysis of EM for Mixtures of Separated, Spherical
Gaussians, by S. Dasgupta and L. Schulman, JMLR, 8, 203–26, 2007.
Of course, the assumption of Gaussianity of X can be relaxed and a similar bound holds for any
random d-dimensional vector of independent zero mean sub-Gaussian variables (using Bernstein
inequality). Soon, we will derive a more general concentration bound for the norm ‖X‖ of a
sub-Gaussian vector X using maximal inequalities.

(b) Now assume that X and Y are both Nd(0, Id) and are independent. Below you are allowed to
proceed in a heuristics manner, even though the arguments can be made rigorous. Show that

E[(X>Y )2] = d.

In fact, it can be shown that |X>Y | concentrates around
√
d as well, i.e. |X>Y | ∼

√
d with

high probability (again, this is an informal statemnent).
Using this fact and part (a), argue informally that

|X>Y |
‖X‖|Y ‖

∼ 1√
d
,

with high probability. Thus conclude that in high-dimensions, independent isotropic (i.e. having
the identity matrix as the covariance matrix) Gaussian vectors arenearly orthogonal2 with high
probability; the higher the dimension, the more orthognal random isotropic vectors are.
You may use the fact that if X ∼ Nd(, In), then X

‖X‖ and ‖X‖ are independent.
Again, the assumption of Gaussianity can be replaced by that of sub-Gaussianity.

6. Random Projection and the Celebrated Johnson-Lindenstruass Lemma.

See D. Achlioptas, Database friendly random projections: Johnson-Lindenstrauss with binary coins,
Journal of Computer and System Sciences 66 (2003) 671–687.

Suppose we have a (deterministic) vector x in RD and, for ε ∈ (0, 1/2) we would like to find a random
mapping f : RD → Rd, where d is smaller than D, such that

(1− ε)‖f(x)‖2 ≤ ‖x‖2 ≤ (1 + ε)‖f(x)‖2

with high probability. One way is to construct a d ×D matrix A with iid entries from the N(0, 1)
distribution and then take

f(x) =
1√
d
Ax, x ∈ RD.

You can think of f as being a random projection from a high-dimensional space RD into the smaller
space Rd.
Show that

2Recall that x, y ∈ Rd are orthognsal vectors whenever x>y = 0.
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(a) ‖x‖2 = E
[
‖f(x)‖2

]
.

(b) For each ε ∈ (0, 1/2)

P
( ∣∣‖f(x)‖2 − ‖x‖2

∣∣ > ε‖x‖2
)
< 2 exp

{
−d/4(ε2 − ε3)

}
.

(c) Using the above result, show that, if we are given n deterministic vectors (x1, . . . , xn) in RD and
we compute their projections f(x1), . . . , f(xn) in Rd, we are guaranteed that the all the pairwise
squared distances between the projected points are distorted by at most a factor of ε ∈ (0, 1/2)

with probability at least 1− δ if d ≥ 4(log(1/δ)+2 log(n))
ε2−ε3 . That is,

‖xi − xj‖2(1− ε) ≤ ‖f(xi)− f(xj)‖2 ≤ ‖xi − xj‖2(1 + ε), ∀i 6= j,

with probability at least 1− δ.

For parts (a) and (b) proceed as follows: show that the squared norm of
√
df(x)
‖x‖ is equal in distribution

to the sum of d squared standard normals, and therefore has a χ2
d distribution.

In your subsequent derivation, you may use the following facts:

(a) The mfg of a χ2
1 at any λ < 1/2 is (1− 2λ)−1/2 .

(b) For any ε ∈ (0, 1/2), setting λ = ε
2(1+ε) < 1/2, we get

e−2(1+ε)λ

1− 2λ
= (1 + ε)e−ε < e−1/2(ε2−ε3)

and setting λ = ε
2(1−ε) < 1/2 we get

e2(1−ε)λ

1 + 2λ
= (1− ε)eε < e−1/2(ε2−ε3)

What is striking about this result is that the dimension D of the original space does not appear
anywhere in these bounds!

This is an instance of what is also known as the Johnson-Lindenstruass Lemma, which loosely speak-
ing, states that a random projection of n points from a high-dimensional space into a d dimensional
space preserves the pairwise squared distances up to a multiplicative factor of ε with high probability
if d is of order logn

ε2
, independently of the dimension of the original space.

Notice that instead of using independent N(0, 1) variables to populate A, we could have used any
sub-Gaussian distribution.

7. The Bretagnole-Huber-Carol Inequality. Let (X1, . . . , Xk) have a multinomial distribution with
parameters (p1, . . . , pk) ∈ (0, 1)k and n. Show that

P

(
k∑
i=1

|Xi − npi| ≥ 2
√
nt

)
≤ 2k exp−2t2 , ∀t > 0.

8. Squares and products of sub-gaussians are sub-exponentials. Below, X and Y are centered
random variables.

(a) Show that if X ∈ SG(σ2) than X2 ∈ SE(ν2, α), for some α and ν, both depending on σ.

4



(b) Show that if X ∈ SG(σ2) and Y ∈ SG(τ2), then XY ∈ SE(ν2, α), some α and ν, both
depending on σ, both depending on σ and τ (see exercise 2.13 (d) in the book.)

Hint: For this problem you may find it helpful to use the following:

(a) The Cr inequality: If X and Y are random variables such that E|X|r < ∞ and E|Y |r < ∞,
where r ≥ 1, then

E|X + Y |r ≤ 2r−1 (E|X|r + E|Y |r)

(b) The bound
E|X|r ≤ (2σ2)r/2rΓ(r/2) r ≥ 1,

proved in class.

9. Sub-Gaussian concentration around the mean implies sub-Gaussian concentration around
the median, and vice versa.

(a) Exercise 2.14 from Chapter 1. In part (c) you do not need to prove the claims about c3 and c2

and, similarly, in part (d) you do need to prove the claims about c1 and c2.

(b) Assume that P (|X −µ| ≥ t) ≤ Ce−ct2 for all t ≥ 0 and some positive C and c, where µ = E[X].
Find a bound for |µ−mX |, where mX is a median for X. Assuming similarly that P (|X−mX | ≥
t) ≤ Ce−ct2 , find a bound for |µ−mX |.
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