
36-709, Spring 2019
Homework 2

Due Thursday, Feb 21 by 5:00pm in JaeHyeok’s mailbox

1. Orlicz norms. We have defined sub-gaussian and sub-exponential variables in terms of bounds on the
moment generating functions. There exists an equivalent and more general way of expressing these
properties using Orlicz Norms of random variables, which is more abstract but, at the same time,
leads to simpler calculation. You will explore these concepts in this exercise. First, do the following
problems in the book:

(a) 2.18 and

(b) 2.19.

In this context, a random variables is said to be sub-gaussian if there exists a K > 0 such that

E
[
eX

2/K2
]
≤ 2 (1)

and sub-exponential if there exists a constant K ′ > 0 such that

E
[
e|X|/K

′
]
≤ 2. (2)

If X is sub-gaussian, its sub-gaussian norm is the smallest K satisfying (1), which correspond to
‖X‖ψ2 . Similarly, if X is sub-exponential, its sub-exponential norm is ‖X‖ψ1 , the smallest K ′ satis-
fying (2).

(c) Prove that X is sub-gaussian if and only if X2 is sub-exponential and

‖X2‖ψ1 = ‖X‖2ψ2

(d) If X and Y are sub-gaussians, then XY is sub-exponential with

‖XY ‖ψ1 ≤ ‖X‖ψ2‖Y ‖ψ2 .

Hint: use the inequality xy ≤ 1
2x

2 + 1
2y

2, valid for all x, y ∈ R.

The last two properties would have made problem 8 in Homework 1 easier...

Remarks. (Please read) it is possible to show that the above definitions are equivalent to the ones
given in class: see the Appendix of Chapter 2 of the textbook. In particular, if X is sub-exponential
then

E
[
eλX

]
≤ expλ2‖X‖2ψ1

, ∀|λ| ≤ 1

‖X‖ψ1

.

From this, it is possible to derive the following, equivalent, versions of Hoeffding and Bernstein
inequalities which you will also find in the literature.

• Hoeffding inequality. Let X1, . . . , Xn be independent, mean-zero sub-gaussian variables.
Then, there exists a universal constant c > 0 such that, for any t ≥ 0,

P

(∣∣∣∣∣
n∑
i=1

Xi

∣∣∣∣∣ ≥ t
)
≤ 2 exp

(
− ct2∑n

i=1 ‖Xi‖2ψ2

)
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• Bernestein inequality. Let X1, . . . , Xn be independent, mean-zero sub-exponential variables.
Then, there exists a universal constant c > 0 such that, for any t ≥ 0,

P

(∣∣∣∣∣
n∑
i=1

Xi

∣∣∣∣∣ ≥ t
)
≤ 2 exp

(
−cmin

{
− t2∑n

i=1 ‖Xi‖2ψ1

,
t∑n

i=1 ‖Xi‖ψ1

})

In other words, mapping to the notation used in class, σ = ‖X‖ψ2 and ν = α = ‖X‖ψ1 .

2. Let (X1, . . . , Xn) be independent random variables with mean zero and let (a1, . . . , an) ∈ Rn. Com-
pute bounds for

P

(
|
n∑
i=1

aiXi| ≥ t

)
under the assumption that the Xi’s are in the class SG(σ2) and also under the assumption that they
are in SE(ν2, α). Compare the bounds. When does one dominate the other?

3. (Reading exercise. Not to be graded for correctness, but only for effort)
Suppose that X1, . . . , Xn are zero-mean, independent random variables belonging to the class SG(σ2)
and A = (Ai,j) a n× n matrix. Let

‖A‖op = max
x∈Rn,x 6=0

‖Ax‖
‖x‖

and

‖A‖HS =

√√√√ n∑
i=1

n∑
j=1

A2
i,j

be the operator and the Hiolbert-Schmidt (or Frobenius) norm of A. Notice that ‖A‖op is also the
largest absolute eigenvalue of A. The goal of this exercise is to derive an exponential inequality for
the probability

P
(∣∣∣X>AX − E

[
X>AX

]∣∣∣ ≥ t) ,∀t ≥ 0.

Do so by reproducing the proof of Theorem 1.1 from the following reference, using the definition of
sub-Gaussian and sub-Exponential variables given in class.

• Rudelson, M., and Vershynin, R. (2013). Hanson-Wright inequality and sub-gaussian concen-
tration. Electron. Commun. Probab., 18(82), 1- 9.

Notice that the definitions of sub-gaussian and sub-exponential variables in this paper is different
than the ones given in class and correspond to the ones in problem 3. Make sure to keep track of the
constants that depend on σ2.

4. (a) Let X = (X1, . . . , Xd) be a d-dimensional vector comprosed of independent, zero-mean, unit-
variance random variables in the class SG(σ2). Find a bound for

P
(∣∣∣‖X‖ − √d∣∣∣ ≥ t√d) , t > 0.

We sketched the proof in class. Please give the details.
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(b) Let E be a d-dimensional linear subspace of Rn and (X1, . . . , Xn) be a vector of independent zero-
mean, unit-variance sub-Gaussian random variables with sub-Gaussian parameter σ2. Compute
a bound for

P
(
|d(X,E)−

√
n− d| ≥ u

)
, u ≥ 0

where d(X,E) = infy∈E ‖X − y‖ is the distance between X and E.
Hint: Write d(X,E) = ‖PE⊥X‖, where PE⊥ is the orthogonal projection of X onto the orthog-
onal complement of E and work wth d2(X,E). Use the result from problem 3.

5. Look at the paper Hsu. D., Kakade, S. M. and ZXhang, T. (2012). A tail inequality for quadratic
forms of subgaussian random vectors, Electron. Commun. Probab. 17, no. 52, 1–6.

(a) Prove Proposition 1.2. Assume the ui’s to be independent.

(b) On page 5, take a look at the subsection titled ”Example: fixed-design regression with subgaus-
sian noise”. The settings considered there are thos of a linear regression with fixed design. In
details, let Y1, . . . , Yn be independent random variables and x1, . . . , xn be fixed points in Rd. In
the regression framework, it is typically assumed that

Yi = f(xi) + εi, i = 1, . . . , n, (3)

where f : Rd → R is an regression function and the εi’s are i.i.d. sub-gaussian centered variables.
(The linear regression model further assumes the parametric form f(x) = x>β for some β ∈ Rd.)
Here, we do not need (3) to hold. Setting Σn = 1

n

∑n
i=1 xix

>
i (assumed invertible), let

β = Σ−1n

(
1

n

n∑
i=1

xiE[Yi]

)
and β̂ = Σ−1n

(
1

n

n∑
i=1

xiYi

)

be the linear regression parameters and the least squares estimator of such parameters, respec-
tively. Recall that β is the unique minimizer of the function η 7→

∑n
i=1

1
nE
[
(Yi − x>i η)2

]
, i.e.

β minimizes the expected mean squared error, or L2 risk. We are interested in evaluating the
excess risk of β̂, which is the increase in the expected mean squared error when using β̂ instead
of the optimal parameter β. To that end, suppose that we could observe n new independent
responses Y ′ = (Y ′1 , . . . , Y

′
n), independent of the original Yi’s. Then, for any vector γ ∈ Rd we

may define the excess risk of γ as

R(γ) = EY ′
[

1

n

n∑
i=1

(Y ′i − x>i γ)

]
− EY ′

[
1

n

n∑
i=1

(Y ′i − x>i β)

]
,

where EY ′ denotes expectation with respect to Y ′. The excess risk R(γ) measures the increase
in the L2 loss we incur if instead of using the optimal vector β to predict the Y ′i ’s at the design
points we use γ. Now, it is natural to consider the excess risk R(β̂) based on the least squares
estimator β̂ computed using the original sample Y1, . . . , Yn. This is of course a random variable,
since it is a function of β̂ (and therefore of the Yi’s). It can be shown that

R(β̂) =
∥∥∥Σ1/2

n

(
β̂ − β

)∥∥∥2 =
∥∥∥ 1

n

n∑
i=1

(
Σ−1/2n xi

)
(Yi − E[Yi])

∥∥∥2.
Prove the above identities (you may want to rewrite the expression for the excess risk using
matrix algebra).
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(c) Fill in the details for the application of Theorem 2.1 to derive a probabilistic bound on the
excess risk of the least squares estimator.

6. Robust statistics and the median-of-mean estimator. Suppose we observe n i.i.d. random
variables with distribution P and would like to construct a 1 − α confidence set for the expected
value of P , where α ∈ (0, 1).

(a) If the common distribution P is in the class SG(σ2) provide such a confidence interval.

(b) Now let’s drop the assumption that P is a SG(σ2) distribution and in particular allow for very
thick tails.

How should we proceed?

Here is a simple method. Assume that Var[X] = σ2 < ∞. For a fixed α ∈ [e1−n/2, 1), set
b = dln(1/α)e and note that b ≤ n/2. Next, partition [n] = {1, . . . , n} into b blocks B1, . . . , Bb
each of size |Bi| ≥ bn/bc ≥ 2 and compute the sample mean in each block:

Xi =
1

|Bi|
∑
j∈Bi

Xj , i = 1, . . . , b.

Finally define the median-of-means estimator as

µ̂ = µ̂(α) = median
{
X1, . . . , Xb

}
,

where, for any b-tuple of numbers (x1, . . . , xb),

median {x1, . . . , xb} = xj∗ ,

with
|{k ∈ [b] : xk ≤ xj∗}| ≥ b/2 and |{k ∈ [b] : xk ≥ xj∗}| ≥ b/2,

(if more than one such xj∗ satisfies the above inequalities, pick one of them at random).

Show that the median-of-means estimator yields, up to constants, the same type of sub-Gaussian
confidence interval obtained in the first part, but without requiring the assumption of sub-
Gaussianity. That is, show that

P

(
|µ̂− µ| ≥ C

√
σ2 log(1/α)

n

)
≤ α,

for some constant C, where σ2 = Var[X]. You may want to consult these paper:

• M. Lerasle and R. I. Oliveira (2011). Robust empirical mean estimators.
https://arxiv.org/pdf/1112.3914v1.pdf

• Luc Devroye, Matthieu Lerasle, Gabor Lugosi and Roberto I. Oliveira (2016). Sub-Gaussian
mean estimators.
https://arxiv.org/pdf/1509.05845v1.pdf

(c) The median-of-means estimator has an obvious drawback. What is it? Hint: think of the
situation when you want to use this estimator to compute confidence intervals at different levels
α and α′...
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7. Concentration for the bins and balls problem.
In the balls and bins problem, m balls are thrown independently and at random into n bins (meaning:
each balls is equally likely to be placed in any of the n bins, independently of the placements of the
other balls). Let Z denotes the number of empty bins. We are interested in bounding

P (|Z − E[Z]| ≥ t) , ∀t ≥ 0. (4)

(a) Show that E[Z] = n(1− 1/n)m.

(b) Show that

P (|Z − E[Z]| ≥ t) ≤ 2 exp

{
−2t2

m

}
, ∀t ≥ 0.

8. Median and sample quantiles.

(a) Suppose that (X1, . . . , Xn) is an i.i.d. sample from a distribution P (if you like, you may assume
P to be absolutely continuous). Let X(1) ≤ X(2) < . . . < X(n) be the order statistics and set
α ∈ (0, 1). Determine a 1− α confidence interval for the median of P of the form(

X(k1), X(k2)

)
for some choice of k1 < k2. Determine k1 and k2 by relating this problem to a Bin(n, 1/2)
distribution and use concentration.

(b) Consider the same setting as the previous exercise and let F be the c.d.f. of P and p ∈ (0, 1).
The pth quantile and p-th sample quantile are, respectively,

ξp = inf{x : F (x) ≥ p}

and
ξ̂p = inf{x : Fn(x) ≥ p},

res[ectively, where Fn is the sample c.d.f. (i.e. Fn(x) = 1
n

∑n
i=1 1(Xi ≤ x)). Show that, for any

ε > 0,

P
(
|ξ̂p − ξp| > ε

)
≤ 2 exp

{
−2nδ2ε

}
,

where δε = min {F (xp + ε)− p, p− F (ξp − ε)}.
Write, for instance, P

(
ξ̂p > ξp + ε

)
= P (p > Fn(ξp + ε)). Then, notice that Fn(x) is a sum of

i.i.d. Bernoulli’s and use Hoeffding yet again...
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