
36-709, Spring 2019
Homework 3

Due Friday, March 8 by 5:00pm in JaeHyeok’s mailbox

1. A random matrix A of dimension n×m is sub-Gaussian with parameter σ2, written as A ∈ SGm,n(σ2),
when y>Ax is SG(σ2) for any y ∈ Sn−1 and x ∈ Sm−1. You may assume that E[A] = 0 (or otherwise
replace A by A− E[A]).

(a) Suppose that the entries of A are independent variables that are SG(σ2). Show that A ∈
SGm,n(σ2).

(b) Let A ∈ SGn,m(σ2) and recall that the operator norm of A is

‖A‖op = max
x∈Rm,x 6=0

‖Ax‖
‖x‖

= max
y∈Sn−1,x∈Sm−1

y>Ax.

Show that, for some C > 0,
E [‖A‖op] ≤ C

(√
n+
√
m
)
.

(c) Find a concentration inequality for ‖A‖op.

Hint: work with a 1/4 net for Sn−1 and a 1/4 net for Sm−1.

2. Exercise 6.10.

3. 6.15 a)

4. Exercise 5.1.

5. Exercise 5.2.

6. Let A be a n × n symmetric matrix with zero diagonal and off-diagonal entries consisting of
(
n
2

)
independent Bernoulli’s. Specifically, for any i < j,

Ai,j = Aj,i ∼ Bernoulli(pi,j),

where each pi,j ∈ [0, 1]. Then A is the adjacency matrix of an inhomogeneous Bernoulli network, a
random simple graph whose edges are independent Bernoulli’s. In particular, if pi,j = p for all i < j,
A is the adjacency matrix of an Erdö-Renyi random graph.

In many problems – for example when analyzing the performance of spectral clustering algorithms
for community detection – we need a high probability bound for the quantity

‖A− E[A]‖op

Let α = maxi<j pi,j and assume that α = αn is allowed to vanish with n in such a way that

αn = C1
logn
n , for some C1. Notice that αnn is a bound on the maximal degree of the graph.

Show that there exists a constant C ′ such that, with probability at least 1
n ,

‖A− E[A]‖op ≤
√
C ′nαn log n.

Thus, as long as αn is of larger order than logn
n (so that the graph may be sparse, in the sense that

the maximal degree is of smaller order than n), ‖A− E[P ]‖op converges in probability to zero.
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Write A−E[P ] =
∑

i<j(Ai,j − pi,j)(Ei,j) +E(j,i)), where E(i,j) is the n× n matrix whose entries are
all zeros, except for the (i, j)th entry, which is 1. Use Bernsteion matrix inequality.

For the current state-of-the art on bounds for this type of problems see, Afonso S. Bandeira and
Ramon van Handel, (2016). Sharp nonasymptotic bounds on the norm of random matrices with
independent entries, Ann. Probab. Volume 44, Number 4, 2479-2506.

7. Let X1, . . . , Xn independent and identically distributed sequence taking values in a finite set of
cardinalitym which, without loss of generality, we may take to be [m] := {1, . . . ,m}. For each j ∈ [m],
let p̂(j) = 1

n

∑n
i=1 I(Xi = j) be the fraction of the sample points equal to j. Then (p̂(1), . . . , p̂(m)) is

a probability distribution. Similarly, for each j ∈ [m], let p(j) = P(X1 = j).

We are interested in bounding the L1 or total variation distance1 between the empirical probabilities
and the true one, i.e. in bounding

m∑
j=1

|p̂(j)− p(j)|.

(a) Use Hoeffding’s inequality and the union bound to show that, with probability at least 1− δ,
m∑
j=1

|p̂(j)− p(j)| ≤ m
√

log(2m/δ)

2n
.

(b) Here is a way to derive a stronger inequality. Below we will use these standard facts from duality,
which give a variational representation of the L1 and L∞ vector norms:

‖x‖1 = sup
y : ‖y‖∞≤1

x>y and ‖x‖∞ = sup
y : ‖y‖1≤1

x>y.

(Recall that ‖x‖∞ = maxi |xi| and ‖x‖1 =
∑

i |xi|). Let Nε be a ε-net of [−1, 1]m with respect to
the metric induced by the ‖ ·‖∞ norm (of course, 0 < ε < 1). Treat the probability distributions
p̂ := (p̂(1), . . . , p̂(m)) and p := (p(1), . . . , p(m)) as vectors in Rm.

Let x∗ ∈ [−1, 1]m be such that
∑m

j=1 |p̂(j)− p(j)| = (p̂− p)>x∗. Let s∗ = s∗(x∗) be the closest
point in Nε to x∗ (break ties arbitrarily). Of course, both x∗ and s∗ are random.

i. Show that
m∑
j=1

|p̂(j)− p(j)| ≤ 1

1− ε
(p̂− p)>s∗

Hint: use the standard fact, from duality, that ‖x‖1 = supy : ‖y‖∞≤1 x
>y and Hölder’s in-

equality, which gives that |x>y| ≤ ‖x‖1‖y‖∞
ii. Use Hoeffding’s inequality and the union bound to bound the the right hand side of the

previous expression with probability at least 1− δ. Hint: it is crucial that you realize that
you cannot use Hoeffding inequality on (p̂− p)>s∗ because each coordinate of s∗ depends on
all the Xi’s. Instead you need to use the bound (p̂− p)>s∗ ≤ maxy∈Nε(p̂− p)>y. Each term
(p̂− p)>y can be handled with Hoeffding’s inequality.

iii. At this point, argue that |Nε| ≤
(
2
ε

)m
and pick a value for ε. Compare to the naive bound

in part (a). You should get a better dependence on m.

See also the paper: T. Weissman, E. Ordentlich, G. Seroussi, and S. Verdú. Inequalities for the `1
deviation of the empirical distribution. Technical report, Hewlett-Packard Labs, 2003

1Technically, this is twice the total variation distance.
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