
36-709, Spring 2018
Homework 4

Due Friday April 5 by 5:00pm in JaeHyeok’s mailbox

1. In earlier works on the lasso, people have used a even stronger assumptions than the restricted
eigenvalue property. Here is one. Suppose that the design matrix X is such that, for some integer
k > 0,

max
i,j

∣∣∣∣X>i Xj

n
− 1(i = j)

∣∣∣∣ ≤ 1

23k
(1)

where Xi is the ith column of X, i = 1, . . . , d. Think about what that means.

(a) Show that this condition implies that, for any subset S of {1, . . . , d} of cardinality no larger
than k < d and any ∆ ∈ Rd with ‖∆Sc‖1 ≤ 3‖∆S‖1,

‖∆‖2 ≤ 2

n
‖X∆‖2.

That is, show that this condition implies the RE(3, 1/2) condition given in class for all non-
empty subsets S of {1, . . . , d} of size no larger than k. Instead of the constant 23 you may take
a larger one if it simplifies your calculations.

(b) Suppose that the entries of X are now populated by independent Rademacher variables (a
Rademacher variable is one that that takes the values +1 and −1 with equal probability). Show
that, for any δ ∈ (0, 1), if

n ≥ Ck2(log(d) + log(1/δ)),

for some constant C > 0, then X satisfies the condition (1), with probability at least 1 − δ.
Again, instead of 23 feel free to show the result for a different constant if it helps with the
calculations.

2. Exercise 7.13

3. Read the paper “Assumptionless consistency of the lasso”, by S. Chatterjee. The paper is available
at https://arxiv.org/pdf/1303.5817.pdf. Reproduce the proofs of Theorem 1 and 2. Theorem
1 in particular shows that the lasso is a good method for prediction.

4. The Lasso and Fals Discoveries. Read Sections 1-4 of the paper “False Discoveries occur Early on
the Lasso Path”, by Weijie Su, Malgorzata Bogda and Emmanuel J. Candés, available at https://

statweb.stanford.edu/~candes/papers/LassoFDR.pdf. You are not expected to read the proofs,
which are based on advanced techniques not covered in the course. Write a paragraph to summarize
their findings.

5. Inference after model selection.

(a) Suppose that we observe n independent random variables (X1, . . . , Xn) where Xi ∼ N(µi, 1) for
all i. The means µ1, . . . , µn are unknown but we suspect that most of them are zero and some
are large in absolute value. We first perform a naive model selection procedure by computing
the random set of indexes

Î = {i : |Xi| > 1},
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corresponding to the variables that presumably have the largest means in absolute value. This
is the model selection part. Then, for any one i ∈ Î (assumed non-empty), we test the null
hypothesis that µi = 0 at the significance level of α = 0.05. This the inference part. We decide
to ignore the selection step, and use the test that rejects if |Xi| > zα/2, the 1− α/2 quantile of
a standard normal. What is the problem with this choice? What would you suggest to do in
order to correctly take into account the selection step?

(b) The bive problems examplifies a much more general phenomenon. Read the paper A Note
on Screening Regression Equation, by David A. Freedman, published in 1983 in the American
Statistician, available here.

6. Consider the linear regression model
Y = Xθ∗ + ε

where θ ∈ Rd, X is fixed and ε ∈ Rn consists of independent zero-mean variables with finite variance.
The ridge estimator is defined as

θ̂ridge = θ̂ridge(λ) = argminθ∈Rd

{
1

n
‖Y −Xθ‖2 + λ‖θ‖2

}
,

where λ > 0.

(a) Show that θ̂ridge is uniquely defined for any λ > 0 and find a closed-form expression. Will the
solution exist and be unique if d > n?

(b) Compute the bias of θ̂ridge.

7. Hard thresholding in the sub-gaussian many means problem. Suppose we observe the vector
X = (X1, . . . , Xd) ∈ Rd, where

X = θ∗ + ε,

with θ∗ ∈ Rd unknown and ε ∈ SGd(σ2). We would like to estimate θ∗ using the hard thresholding
estimator θ̂ = (θ̂1, . . . , θ̂d) with parameter τ > 0, given by:

θ̂i =

{
Xi if |Xi| > τ
0 if |Xi| ≤ τ.

This estimator either keeps or kills each coordinate of X.

For δ ∈ (0, 1), set
τ = 2σ

√
2 log(2d/δ).

Notice that P (maxi |εi| > τ/2) ≤ δ (If this surprises you, refresh your memory on maximal inequali-
ties).

(a) Prove that the hard-thresholding estimator is the solution the optimization problem

min
θ∈Rd
‖X − θ‖2 + τ2‖θ‖0.

(b) Prove that if ‖θ∗‖0 = k, with probability at least 1− δ,

‖θ̂ − θ∗‖2 ≤ Cσ2k log(2d/δ),

for some universal constant C > 0. Hint: show that, for each i = 1, . . . , d

|θ̂i − θ∗i | ≤ C ′min{|θ∗i |, τ}

for some C ′ > 0, with probability at least 1− δ.
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(c) Compare with the oracle estimator θ̂or, with coordinates given by

θ̂ori =

{
Xi if i ∈ supp(θ∗)
0 otherwise.

for i = 1, . . . , d. This estimator is of course not computable, as it requires knwoledge of supp(θ∗).
It is an estimator that an oracle, who has access to this additional knowledge, would be able
to compute. Oracle estimators are idealized estimators, which perform at least as well as any
computable estimators. Thus, in rder to show that a given estimator performs well, it is enoygh
to show that it mimicks closely the performance of an oracle estimator.

(d) Show that if mini∈supp(θ∗) |θi| > 3
2τ , then, with probability at least 1− δ,

supp(θ̂) = supp(θ∗).

How does θ̂ compare now to the oracle estimator?

8. Consider the distribution-free framework for regression: the pair (X,Y ) ∈ Rd ×R has a distribution
P on Rd. For any x ∈ Rd in the support of X, let µ(x) = E[Y |X = x] be the regression function.
As we discussed in class, linear regression postulates that µ(x) = β>x, for some β ∈ Rd. This is a
very strong assumption, which is unlikely to hold in most scenarios. What if one still fits a linear
regression function?

(a) Let Σ = V[X], assumed to be invertible. Define

β∗ = argminβ∈RdE
[
(Y −X>β)2

]
.

The vector β∗ contains the coefficients of the best (in an L2 sense) approximation of Y by linear
functions of X (In fact, X>β∗ is the L2 projection of Y into the linear space of linear functions
on X). Show that

β∗ = Σ−1α,

where α = E [Y X] ∈ Rd.

(b) Now observe data in the form of n pairs (X1, Y1), . . . , (Xn, Yn)
i.i.d.∼ P . Assume for simplicty

that E[X] = 0. The plug-in estimator of β∗ is the ordinary least squares estimator

β̂ = Σ̂−1α̂,

where Σ̂ = 1
n

∑n
i=1XiX

>
i and α̂ = 1

n

∑m
i=1 YiXi. We assume that P belongs to a large non-

parametric class of probability distributions satisfying the folowing assumptions:

i. each P in the class has a continuous distribution, which implies that Σ̂ is invertible almost
surely if n ≥ d (no need to show this fact).

ii. Y takes values in [−K,K] and X is a sub-gassuian random vector with parameter σ2;

iii. the covariancer matrix of X, Σ, has a positve minimal eigenvalue bounded from below by
λmin > 0. denumerate Compute a bound for

‖β̂ − β∗‖.

The bound should depend on d, K, σ2, λmin and λmax(Σ) all of which are allowed to change
with n. Based on your bound, comment on the dependence on d.
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Hint: Recall that ‖Ax‖ ≤ ‖A‖op‖x‖, ‖AB‖op ≤ ‖A‖op‖B‖op and that the maximal eigen-
vaue of Σ−1 (which is also its operator norm) is the reciprocal of the minimal eogenvale
of Σ. Also, you may find the following result useful (see equation 5.8.2 in the book Matrix
Analysis, by Horn and Johnson, 2012): letting E = Σ̂− Σ, if ‖Σ−1E‖op < 1, we have that

‖Σ̂−1 − Σ−1‖op ≤ ‖Σ−1‖op
‖Σ−1E‖op

1− ‖Σ−1E‖op
.

You may want to use the matrix Bernstein inequality to get sharer rates.
Note: One should be able to infer this result from the main Theorem in the highly recom-
mended paper andom design analysis of ridge regression”, by iel Hsu, Sham M. Kakade and
Tong Zhang, available efhttps://arxiv.org/pdf/1106.2363.pdfhere. However, presumably, if
you follow the hint you should end up with a simpler proof. I am curious to see what rates
you get...
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