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23.1 Applications of Davis–Kahan Theorem

In this lecture we look at some applications of the Davis–Kahan theorem. We first provide a bound on the
distance between the estimated and the actual leading eigenvectors of the covariance matrix in the spiked
covariance model. Then, we bound the number of misclustered nodes in the task of community recovery in
the settings of the Stochastic Block Models.

23.1.1 Spiked Covariance Model

Let X1, X2, . . . , Xn
i.i.d∼ ( 0, Σ ) in Rd and let the covariance matrix, Σ, be a spiked version of Id:

Σ = θνν> + Id

for θ > 0 and ν ∈ S d−1. From the above definition of Σ, it follows that its leading eigenvalue, λ1, is equal to
1 + θ, with corresponding leading eigenvector ν, while the other eigenvalue is 1 with algebraic multiplicity
d− 1. The main question that we address in this section is: are we able to estimate the leading eigenvector
of Σ, i.e. ν, in this simple theoretical model?

For this purpose, let ν̂ be the leading eigenvector of the sample covariance matrix Σ̂n =
1

n

∑n
i=1XiX

>
i . We

want to estimate how close is ν̂ to ν and we proceed as follows:

min
ε∈{−1, 1}

‖ε ν̂ − ν‖2 = 2− 2
∣∣ν̂>ν∣∣ (I)≤ 2− 2

∣∣ν̂>ν∣∣2 (II)
= 2 sin2 (∠ (ν̂, ν))

where for inequality (I) we used Cauchy-Schwartz to bound
∣∣ν̂>ν∣∣ ≤ 1 and for equality (II) we used the fact

that sin2 (∠ (ν̂, ν)) + cos2 (∠ (ν̂, ν)) = 1 and ∠ (ν̂, ν) = cos−1
(∣∣ν̂>ν∣∣). We, hence, use Davis–Kahan theorem

as in [YWS14] to bound sin2 (∠ (ν̂, ν)) and we get:

min
ε∈{−1, 1}

‖ε ν̂ − ν‖2 ≤ 8
‖Σ̂n − Σ‖2op

θ2
(23.1)

where θ is the eigengap.

By making some additional assumptions on the Xi’s, we can provide a bound for ‖Σ̂n −Σ‖op in (23.1). For
example, let Xi ∈ SGd (‖Σ‖op) for all i ∈ { 1, 2, . . . , n } where, in our settings, ‖Σ‖op = 1 + θ. Then, with
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probability at least 1− δ, with δ ∈ (0, 1), we have:

min
ε∈{−1, 1}

‖ε ν̂ − ν‖ ≤ C 1 + θ

θ
max


√
d+ log

(
1
δ

)
n

,
d+ log

(
1
δ

)
n

 (23.2)

In Eq.(23.2) we note that as θ, i.e. the eigengap, gets smaller then it is hard to distinguish the leading
eigenvector from the other ones and the bound explodes. Therefore, in order to provide a bound on the
distance between the estimated and the leading eigenvector of the spiked covariance matrix, we need to
estimate ‖Σ̂n − Σ‖op and the eigengap needs to be bounded away from zero.

From Eq.(23.2) we see that, when θ does not change with n, in order for the bound to go to zero for large
n, we need that d = o (n). In high dimensions, instead, where we allow d to grow and θ to decay with n, we

note that, in order for the bound to go to zero,

√
d+ log

(
1
δ

)
n

should go faster to zero than 1
θ to infinity.

23.1.2 Community Recovery in Stochastic Block Model

As a reference for the following application see sec. 4.5 of [RV18]. Suppose we are dealing with a Stochastic
Block Model with k communities and n nodes, where k = 2. The actual community assignment is unknown
to us and we want to recover it from the adjacency matrix A, whose entries are defined as follows. For all
i 6= j, where i, j ∈ {1, 2, . . . , n}, and 0 < q < p < 1:

Aij =

{
Bernoulli (p) i, j are in the same community
Bernoulli (q) otherwise

and Aii = 0 for all i. Moreover, once we condition on a particular random partition of the nodes in the
community, the matrix A is a collection of independent Bernoulli random variables.

Task: to recover the community assignments. As we will see, when the probabilities p and q are close to
each other it is hard to solve this problem. We note that:

E [A] = P = ΘBΘ> − diag
(
ΘBΘ>

)
where:

B =

[
p q
q p

]
where the entry Bij represents the probability of an agent in community i to form an edge with an agent
belonging to community j.

We have matrix Θ ∈ {0, 1}n×k, where each row has only 1 as non zero entry in the position corresponding
to the index of the community to which node i belongs, i.e.:

Θik =

{
1 if node i is in community k
0 otherwise

Example: let n = 4 and the community assignments be {1, 2} and {3, 4}. Then:

ΘBΘ> =


p p q q
p p q q
q q p p
q q p p
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Example: Let n be an even number, k = 2 and let
{

1, 2, . . . , n2
}

and
{
n
2 + 1, n2 + 2, . . . , n

}
be the com-

munity assignments. It can be shown that rank(P ) = k = 2, and that the leading eigenvalue of matrix P ,
with the corresponding leading eigenvector, are:

λ1 =

(
p+ q

2

)
n , ν1 =


1
1
...
1
1


1√
n

While the second leading eigenvalue of matrix P and its corresponding eigenvector are equal to:

λ2 =

(
p− q

2

)
n , ν2 =



1
...
1
−1
...
−1


1√
n

(23.3)

where in the second leading eigenvector in (23.3) the first n
2 entries have positive sign while the last n

2 have
negative sign. We note that the sign of the entries of the second leading eigenvector exactly correspond to
the community assignments.

Rule: Target the second leading eigenvector of matrix P and cluster the nodes on the basis of the sign of
the corresponding index.

In order to compute a bound on the number of mistakes that we make by clustering the nodes according
to the above rule, we proceed as follows. Let the adjacency matrix A = P + E, where matrix E is a noise
matrix. We have:

E [A] = P

Moreover, from a result in a previous homework, with high probability, we have:

‖E‖op .
√
n

Also:

‖P‖op =

(
p+ q

2

)
n− p �

(
p+ q

2

)
n

We note that the signal contained in P is stronger than the noise because the operator norm of P is of the
order n while the operator norm of E is of the order

√
n. This means that when n is large enough we may

use matrix A, instead of P , to recover community assignments.

By Davis–Kahan theorem, targeting the 2nd leading eigenvector of matrix A, i.e. ν̂2 (A), we get:

min
ε∈{−1, 1}

‖ε ν̂2 (A)− ν2 (P )‖ .
‖E‖op(
p−q
2

)
n
≤ C(

p−q
2

)√
n

where C > 0 is an universal constant and
(
p−q
2

)
n is the eigengap. It follows that, with high probability:

n

n∑
i=1

(ε ν̂2 (A)i − ν2 (P )i)
2 ≤ C 2(

p−q
2

)2
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where ν̂2 (A)i and ν2 (P )i are the ith entry of the second leading eigenvector of, respectively, matrix A and
matrix P . Since

√
n ν2 (P ) ∈ {−1, 1}n, if sign (ε ν̂2 (A)i) 6= sign (ν2 (P )i), that means we are misclustering

node i, then we have:
n (ε ν̂2 (A)i − ν2 (P )i)

2 ≥ 1

So that, with high probability, the bound on the number of misclustered nodes is:

|{ i ∈ {1, 2, . . . , n} s.t. sign (ε ν̂2 (A)i) 6= sign (ν2 (P )i)}| ≤
C 2(
p−q
2

)2
The above result suggests that, in order to recover the communities in a consistent manner, i.e. the number
of mistakes vanishes as n increases, we need:

C 2(
p−q
2

)2 1

n

n→∞−−−−→ 0

Therefore, in order for the above condition to hold, we need
p− q

2
� 1√

n
. In other words, if the probabilities

p and q are too close to each other then it is not possible to produce an estimator that consistently recovers
the communities.

In [EBW17] the authors provide a bound for the quantity:

min
ε∈{−1, 1}

‖ε ν̂ − ν‖∞

that leads to sharper results in the Stochastic Block Model.

23.2 Sparse PCA

We now turn to the topic of Sparse PCA. Assume the following sparse spiked covariance model:

Σ = θνν> + Id (23.4)

where θ > 0, ν ∈ S d−1 and ‖ν‖0 = k ≤ d
2 . We want to estimate ν with ν̂, the latter being defined as follows:

ν̂>Σ̂nν̂ = max
u∈S d−1

‖u‖0=k′

u>Σ̂nu (23.5)

where we know that k ≤ k′ ≤ d
2 . In order to be solved, the optimization problem in (23.5) requires a

combinatorial search over all possible sparse leading eigenvectors of Σ̂n. In practice, this is infeasible due to
high computational costs. Nonetheless, we may establish the following bound.

Theorem 23.1 Let X1, X2, . . . , Xn
i.i.d∼ ( 0, Σ ), where Xi ∈ SGd ( ‖Σ‖op) for all i = 1, 2, . . . , n where, in

the settings of (23.4), ‖Σ‖op = 1 + θ. Let ν̂ be defined as in (23.5). Then, with probability at least 1 − δ,
[ δ ∈ (0, 1) ]:

min
ε∈{−1, 1}

‖ε ν̂ − ν‖ ≤ C 1 + θ

θ
max


√√√√ (k + k′) log

(
ed
k+k′

)
+ log

(
1
δ

)
n

,
(k + k′) log

(
ed
k+k′

)
+ log

(
1
δ

)
n


(23.6)
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By comparing this result with (23.2), we note that the term (k + k′) log
(

ed
k+k′

)
is present instead of the

term d. The rate in (23.6) is better when, as we are assuming, (k + k′) ≤ d.

We will prove the result (23.6) in the next lecture. In the meanwhile, here some important facts that we are
going to use in the proof.

Fact:

θ sin2 (∠ (ν, ν̂)) = ν>Σν − ν̂>Σν̂

= ν>Σ̂nν − ν̂>Σν̂ − ν>
(

Σ̂n − Σ
)
ν

(i)

≤ ν̂>
(

Σ̂n − Σ
)
ν̂ − ν>

(
Σ̂n − Σ

)
ν

= 〈 Σ̂n − Σ, ν̂ν̂> − νν> 〉

where for inequality (i) we used (23.5). Note that for any two matrices A, B of the same order, we have:

〈A, B 〉 = tr
(
A>B

)
Let S ⊆ {1, 2, . . . , d} be such that S = supp (ν)

⋃
supp (ν̂). Then |S| ≤ k+ k′. Let ΣS be the submatrix of

Σ with dimensions |S| × |S|, with rows and columns corresponding to the indexes in S. Similarly we define
Σ̂S as submatrix of Σ̂n and the vectors νS and ν̂s, both belonging to R|S|. Then:

θ sin2 (∠ (ν, ν̂)) ≤ 〈 Σ̂S − ΣS , ν̂S ν̂
>
S − νSν>S 〉
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