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24.1 Sparse PCA

In the last class we had looked at sparse PCA.

Let X1, . . . , Xn
i.i.d.∼ (0,Σ), where Xi ∈ SGd(||Σ||op) for all i ∈ {1, . . . , n}. We assumed a spiked covariance

model Σ = θννT + Id, where θ > 0, ν ∈ Sd−1 and ||ν||0 ≤ k ≤ d/2 serves as the structural assumption of
sparsity. Now let

Σ̂n =
1

n

n∑
i=1

XiX
T
i

One of the solution approaches to find ν̂ is,

ν̂ ∈ arg max
θ∈Sd−1

||θ||0≤k′≤d/2

θT Σ̂nθ (24.1)

such that k′ ≤ k. We reasoned that it is intractable in practice due to high computational costs, and
established a bound as shown in the following theorem.

Theorem 24.1 Given the spiked covariance model described above along with the conditions on θ and ν,
and let ν̂ be defined as in 24.1. Then with probability at least 1− δ, δ ∈ (0, 1):

min
ε∈{−1,1}

||εν̂ − ν|| ≤ C 1 + θ

θ
max {√ηn, ηn}

where C is a constant, θ is the eigengap and

ηn =
(k + k′) log de

k+k′ + log
(
1
δ

)
n

Proof: Continuing from last class, we saw that

θ sin2(∠(ν, ν̂)) ≤ 〈Σ̂s − Σs, ν̂sν̂
T
s − νsνTs 〉

Using the Hölder inequality with the p-Schatten norm,

θ sin2(∠(ν, ν̂)) ≤ ||Σ̂s − Σs||∞||ν̂sν̂Ts − νsνTs ||1 (24.2)
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Where || · ||∞ is the L∞−Schatten norm, equivalent to the operator norm. || · ||1 is the 1-Schatten norm.
Focusing on the 1-Schatten norm,

||ν̂sν̂Ts − νsνTs ||1 ≤
√

2||ν̂sν̂Ts − νsνTs ||2 [using Cauchy-Schwarz inequality]

=
√

2||ν̂sν̂Ts − νsνTs ||F
Note that from hereon, we can remove the restriction to s, as we work with the eigenvector ν. As an exercise,
the readers are asked to convince themselves of the fact that ||ν̂sν̂Ts − νsνTs ||F =

√
1− (νT ν̂)2 (It can be

done with the fact that ||A||2F = 〈A,A〉). Using this fact, we have now,

||ν̂sν̂Ts − νsνTs ||1 ≤
√

2 (1− (νT ν̂)2)

=

√
2 sin2 (∠(ν, ν̂)) (24.3)

Substituting Equation 24.3 in Equation 24.2, we get

θ sin2(∠(ν, ν̂)) ≤ ||Σ̂s − Σs||op
√

2 sin2 (∠(ν, ν̂))

θ sin(∠(ν, ν̂)) ≤
√

2||Σ̂s − Σs||op (24.4)

Next, as we saw before,

min
ε∈{−1,1}

||εν̂ − ν||2 ≤ 2 sin2 (∠(ν, ν̂))

We can use this to bound Equation 24.4. Therefore, we get

min
ε∈{−1,1}

||εν̂ − ν|| ≤
√

8

θ
||Σ̂s − Σs||op a.s. (24.5)

It should be noted here that, it is possible to reach this point in the proof using the Davis-Kahan theorem.
It is not possible to use a concentration inequality for ||Σ̂s−Σs||op as Σs is not a fixed matrix, it is random.
Hence, to solve it we use the sup-out argument to write,

min
ε∈{−1,1}

||εν̂ − ν|| ≤
√

8

θ
max

T⊆{1,...,d}
s.t. |T |≤k+k′

||Σ̂T − ΣT ||op

At this point, if we knew something about the way s is selected, we could have a better bound. However,
here we get a union bound.

P

 max
T⊆{1,...,d}

s.t. |T |≤k+k′

||Σ̂T − ΣT ||op ≥ t||Σ||op

 ≤ ( d

k + k′

)
9k+k

′
exp

{
−n

2
max

{(
t

32

)2

,
t

32

}}
(24.6)

Here we get the
(

d
k+k′

)
term by counting all the possible choices of T , and the rest of the bound by fixing T

and and constructing an ε-net for the operator norm. Now we use the fact that(
d

k + k′

)
≤
(

de

k + k′

)k+k′
to bound Equation 24.6.

P

 max
T⊆{1,...,d}

s.t. |T |≤k+k′

||Σ̂T − ΣT ||op ≥ t||Σ||op

 ≤ exp

{
−n

2
max

{(
t

32

)2

,
t

32

}
+ (k + k′) log 9 + (k + k′) log

de

k + k′

}
(24.7)

It should be noted that in Equation 24.7 the bound does not depend on d. The proof is completed by setting
the RHS in Equation 24.7 to δ and solving for t.
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24.2 Uniform Law of Large Numbers (ULLN)

Let X1, . . . , Xn
i.i.d.∼ µ, then Law of Large Numbers says that

X̄n =
1

n

n∑
i=1

Xi
p−→ µ

This is often times not enough, as we might want to estimate the Cumulative Distribution Function (CDF)
well at all points x ∈ R, as illustrated in the following example.

Example. Let X1, . . . , Xn
i.i.d.∼ p with CDF F where

F (x) = P(X1 ≤ x) (24.8)

Fixing x ∈ R, to estimate F (x) we can use the empirical CDF,

F̂n(x) =
1

n

n∑
i=1

1{Xi ≤ x} (24.9)

Note that
∑n
i=1 1{Xi ≤ x} ∼ Binomial(F (x), n), which has mean nF (x). Hence, we can say that F̂n(x)

p−→
F (x). In fact we can get finite sample bounds, but it is not enough if we want to estimate F (·) well, at all
points x ∈ R.

Theorem 24.2 The Glivenko-Cantelli Theorem

sup
x∈R

∣∣∣F̂n(x)− F (x)
∣∣∣ a.e.−−→ 0

where the empirical CDF, F̂n(x), is defined as in Equation 24.9 and F (x) is the true CDF as in Equation
24.8.

This is transitioning from the law of large numbers to the Uniform Law of Large Numbers (ULLN) which
we will see in the next few sections.

24.3 More abstract version

We are going to be referencing a lot of empirical process theory here. For more details the reader is refered
to [VW96].

Let p be a probability distribution over some space X . Let F be a class of functions of the form f : X → R.

And finally, let X1, . . . , Xn
i.i.d.∼ P . The empirical measure associated to X1, . . . , Xn is the random probability

measure of the form

A ⊆ X → Pn(A)
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where

Pn(A) =
1

n

n∑
i=1

1{Xi ∈ A}

For f ∈ F , let
P (f) = E[f(X)]

and

Pn(f) =
1

n

n∑
i=1

f(Xi)

where X ∼ p. So, our target is to evaluate the quantity

||Pn − P ||F = sup
f∈F
|Pn(f)− P (f)|

which is the suprmum of empirical processes. Back to the example of estimating the CDF F , we have

F = {1(−∞, x], x ∈ R}

When f(·) = 1(−∞, x](·), then we can write

P (f) = E[1(−∞, x](X)] = P(X ≤ x) = F (x)

It can be similarly argued that
Pn(f) = F̂n(x)

and finally from Glivenko-Cantelli theorem,

sup
x∈R
|F̂n(x)− F (x)| = sup

f∈F
|Pn(f)− P (f)| = ||Pn − P ||F (24.10)

To see more, the reader is directed to Section 4.2.1 of [W19].

24.4 ULLN using Rademacher complexity

We can interpret the Rademacher random variable (ε) as essentially being a random sign (it takes values +1
and −1 with probability 0.5). We will use this fact in this section to quantify the magnitude of class F .

Let us fix F and the n-tuple xn1 = (x1, . . . , xn). Let

F(xn1 ) = {(f(x1), . . . , f(xn)) ∈ Rn}

for f ∈ F and f ⊆ Rn. The empirical Rademacher complexity of F at xn1 is

Rn(F(xn1 )) = Eε=(ε1,...,εn)

[
sup
f∈F

1

n

∣∣∣∣∣
n∑
i=1

f(xi)εi

∣∣∣∣∣
]

and the Rademacher complexity of F is

Rn(F) = E [Rn(F(Xn
1 ))]

= EXn
1 ,ε

[
sup
f∈F

1

n

∣∣∣∣∣
n∑
i=1

f(Xi)εi

∣∣∣∣∣
]

Now if we can show that if Rn(F)→ 0 then we get ULLN. Note the following theorem which we will explore
in the next class, towards this end.
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Theorem 24.3 Let F be a class of real valued functions on X such that ||f ||∞ = supx∈X |f(x)| ≤ b < ∞
for f ∈ F . Then the

P (||Pn − P ||F ≤ 2Rn(F) + t) ≥ 1− exp

{
−nt

2

2b2

}
Here we can see that if Rn(F)→ 0, then ||Pn − P ||F

p−→ 0
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