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25.1 Uniform Law of Large Numbers

Suppose F : X → Rd, a set of real-valued functions on some space.

Definition 25.1 Rademacher complexity of F .

Rn(F) = EX1,...,Xn∼P,ε1,...,εn∼Rad

{
sup
f∈F

1

n

∣∣∣∣∣
n∑
i=1

εif(Xi)

∣∣∣∣∣
}

where X = X1, . . . , Xn
iid∼ P on X .

Remark. The Rademacher complexity of Ff may be thought of a “measure” of the “size” of F : “how
well can functions from F fit to random noise”?

Theorem 25.2 Let F be a class of real-valued functions on X such that ‖f‖∞ ≤ b for all f ∈ F . Then:

P {‖Pn − P‖F ≥ 2Rn(F) + t} ≤ exp

{
−nt

2

2b2

}
for all t > 0. Here ‖Pn − P‖F denotes the supremum of an empirical process, i.e.,

‖Pn − P‖F
∆
= sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

(f(Xi)−E f(Xi))

∣∣∣∣∣
Proof: The proof of this theorem is done in two parts. In Part I, we control the variation of ‖Pn − P‖F
about its mean (show that it concentrates). In Part II, we control the mean of ‖¶n − P‖F by bounding its
supremum.

Part I. For f ∈ F , denote f̄(X) = f(X)−E f(X). Then we may write:

‖Pn − P‖F = sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

f̄(Xi)

∣∣∣∣∣
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Now, fix (X1, . . . , Xn) to xn1 = x1, . . . , xn and let:

G(xn1 )
∆
= sup
f∈F

1

n

∣∣∣∣∣
n∑
i=1

f̄(Xi)

∣∣∣∣∣
We want to say that if we apply G to a random sequence, it concentrates about its mean. We may do so
using the bounded differences inequality.

We now show that G(·) satisfies the bounded differences property. Let xn1 = (x1, . . . , xn), yn1 = y1, . . . , yn be
fixed sequences such that xi = yi for all i 6= j, and xj 6= yj for some j, i.e., they differ only on one coordinate.
Then, for any given function f ∈ F :

1

n

∣∣∣∣∣
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f̄(xi)

∣∣∣∣∣− sup
h∈F
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n
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h̄(yi)
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≤ 1

n

n∑
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∣∣f̄(xi)− f̄(yi)
∣∣

≤ 1

n

∣∣f̄(xj)− f̄(yj)
∣∣

≤ 1

n

∣∣f̄(xj)
∣∣+

1

n

∣∣f̄(yj)
∣∣

≤ 2b

n

This bound is independent of choices xn1 , y
n
1 , f . Therefore we may conclude that:

G(xn1 )−G(yn1 ) ≤ 2b

n

Reverse the roles of xn1 , y
n
1 to obtain:

|G(xn1 )−G(yn1 )| ≤ 2b

n

This bound works no matter how complicated G is, but leans heavily on the uniform boundedness condition.

We have shown that G(·) satisfies the bounded differences property. Therefore, by McDiarmid’s inequality:

|‖Pn − P‖F −E ‖Pn − P‖F | ≤ t

with probability at least 1− 2 exp{−nt2/2b2}.

Part II. We now control the mean of ‖Pn − P‖F . We will do so by taking the supremum over the function
class F . Unfortunately, this class may consist of infinitely many functions. To handle this, we turn to
Rademacher complexity.

Theorem 25.3 Symmetrization. Let F be a class of integrable functions, i.e., EX∼P |f(X)| <∞. Further,
denote:

‖Rn‖F = sup f ∈ F 1

n

∣∣∣∣∣
n∑
i=1

εif(Xi)

∣∣∣∣∣
Then, for any nondescending and convex function φ : R+ → R+:

E {φ(‖Pn − P‖F )} ≤ EX,ε {φ(2 ‖Rn‖F )}
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Moreover,

E {φ(‖Pn − P‖F )} ≥ EX,ε {φ(1/2 ‖Rn‖F̄ )}

where F̄ = {f −E f, f ∈ F}.

Notice that Rn(F) = EX,ε ‖Rn‖F . Then if φ(x) = x, we obtain:

E ‖Pn − P‖ ≤ 2Rn(F)

proving the main theorem.

Proof: Of Theorem 25.3. We only provide the proof of the upper bound; the lower bound follows similarly.

Suppose X = (X1, . . . , Xn) |= ε = (ε1, . . . , εn). Further suppose a “ghost sample” Y = (Y1, . . . , Yn). Then:

EX {φ(‖Pn − P‖F )}

= EX

{
φ

(
sup
f∈F

1

n

∣∣∣∣∣
n∑
i=1

(f(Xi)−E f(Xi))

∣∣∣∣∣
)}

= EX

{
φ

(
sup
f∈F

1

n

∣∣∣∣∣
n∑
i=1

(f(Xi)−E f(Yi))

∣∣∣∣∣
)}

≤ EX,Y

{
φ

(
sup
f∈F

1

n

∣∣∣∣∣
n∑
i=1

(f(Xi)− f(Yi))

∣∣∣∣∣
)}

(Jensen)

= EX,Y,ε

{
φ

(
sup
f∈F

1

n

∣∣∣∣∣
n∑
i=1

εi (f(Xi)− f(Yi))

∣∣∣∣∣
)}

(f(Xi)− f(Yi)
d
= εi(f(Xi)− f(Yi)))

≤ EX,Y,ε

{
φ

(
sup
f∈F

1

n

∣∣∣∣∣
n∑
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εif(Xi)
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εi − f(Yi)
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)}

(Triangle)

≤ EX,Y,ε

{
1

2
φ

(
sup
f∈F

2

n
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εif(Xi)
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)

+
1

2
φ

(
sup
f∈F

2

n
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εi − f(Yi)
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(Convexity)

= EX,ε

{
φ

(
sup
f∈F

2

n
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n∑
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εif(Xi)

∣∣∣∣∣
)}

= EX,ε {φ(2 ‖Rn‖F )}

The lower bound follows the same argument.

Due to the lower bound, we obtain the following corollary.

Corollary 25.4 If ‖F‖∞ ≤ b, then

‖Pn − P‖F ≥
1

2
Rn(F)−

supf∈F |E f(X)|
2
√
n

− t

with probability at least 1− exp{−nt2/2b2}.

It follows immediately that ‖Pn − P‖F
p→ 0⇔ Rn(F)

n→∞→ 0. If F is the Glivenko-Cantelli class of functions,

then we satisfy Rn(F)
n→∞→
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25.2 Polynomial Discrimination

Our concern now becomes controlling Rn(F).

Definition 25.5 Polynomial discrimination. A class F of f : X → R has polynomial discrimination with
parameter ν ≥ 1 if, for all n, xn1 = x1, . . . , xn ∈ X :

F(xn1 ) = {(f(x1), . . . , f(xn)) ∈ Rn, f ∈ F} ⊆ Rn

has cardinality ≤ (n+ 1)ν .

Lemma 25.6 If F has polynomial discrimination with parameter ν, then for any xn1 = x1, . . . , xn:

Eε

{
sup
f∈F

1

n

∣∣∣∣∣
n∑
i=1

εif(xi)

∣∣∣∣∣
}
≤ D(xn1 )

√
2ν

log(n+ 1)

n

where D(xn1 ) = supf∈F

√
1
n

∑n
i=1 f

2(xi).

Remark. This does not require the boundedness assumption. If ‖f‖∞ ≤ b for all f ∈ F , then D(x
n
1 ) ≤ b.

Example. Consider the function class:

F = {1(−∞,z)(·), z ∈ R}

Observe that E f = P{X ≤ z}.

This class of functions has polynomial discrimination with parameter ν = 1. To see this, let x1, . . . , xn ∈ Rn.
This splits R into at most n+ 1 intervals:

(−∞, x(1), . . . , x(n),∞)

Therefore, we may bound the empirical process:

P

{∥∥∥F̂n − F∥∥∥
∞
≥ 4

√
log(n+ 1)

n
+ t

}
≤ exp

{
−nt

2

2

}

Remark. For a sharper bound, use the DKW inequality.


