36-710: Advanced Statistical Theory

Lecture 25: April 23

Lecturer: Alessandro Rinaldo

Scribes: Addison J. Hu

Spring 2019

Note: LaTeX template courtesy of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

25.1 Uniform Law of Large Numbers

Suppose $\mathcal{F}: \mathcal{X} \to \mathbf{R}^d$, a set of real-valued functions on some space.

Definition 25.1 Rademacher complexity of \mathcal{F} .

$$R_n(\mathcal{F}) = \mathbf{E}_{X_1, \dots, X_n \sim P, \varepsilon_1, \dots, \varepsilon_n \sim \text{Rad}} \left\{ \sup_{f \in \mathcal{F}} \frac{1}{n} \left| \sum_{i=1}^n \varepsilon_i f(X_i) \right| \right\}$$

where $\underline{X} = X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} P \text{ on } \mathcal{X}.$

Remark. The Rademacher complexity of Ff may be thought of a "measure" of the "size" of \mathcal{F} : "how well can functions from \mathcal{F} fit to random noise"?

Theorem 25.2 Let \mathcal{F} be a class of real-valued functions on \mathcal{X} such that $\|f\|_{\infty} \leq b$ for all $f \in \mathcal{F}$. Then:

$$\mathbf{P}\left\{\left\|P_n - P\right\|_{\mathcal{F}} \ge 2R_n(\mathcal{F}) + t\right\} \le \exp\left\{-\frac{nt^2}{2b^2}\right\}$$

for all t > 0. Here $||P_n - P||_{\mathcal{F}}$ denotes the supremum of an empirical process, i.e.,

$$\|P_n - P\|_{\mathcal{F}} \stackrel{\Delta}{=} \sup_{f \in \mathcal{F}} \left| \frac{1}{n} \sum_{i=1}^n \left(f(X_i) - \mathbf{E} f(X_i) \right) \right|$$

Proof: The proof of this theorem is done in two parts. In **Part I**, we control the variation of $||P_n - P||_{\mathcal{F}}$ about its mean (show that it concentrates). In **Part II**, we control the mean of $||\P_n - P||_{\mathcal{F}}$ by bounding its supremum.

Part I. For $f \in \mathcal{F}$, denote $\overline{f}(X) = f(X) - \mathbf{E} f(X)$. Then we may write:

$$\|P_n - P\|_{\mathcal{F}} = \sup_{f \in \mathcal{F}} \left| \frac{1}{n} \sum_{i=1}^n \bar{f}(X_i) \right|$$

Now, fix (X_1, \ldots, X_n) to $x_1^n = x_1, \ldots, x_n$ and let:

$$G(x_1^n) \stackrel{\Delta}{=} \sup_{f \in \mathcal{F}} \frac{1}{n} \left| \sum_{i=1}^n \bar{f}(X_i) \right|$$

We want to say that if we apply G to a random sequence, it concentrates about its mean. We may do so using the **bounded differences inequality**.

We now show that $G(\cdot)$ satisfies the bounded differences property. Let $x_1^n = (x_1, \ldots, x_n), y_1^n = y_1, \ldots, y_n$ be fixed sequences such that $x_i = y_i$ for all $i \neq j$, and $x_j \neq y_j$ for some j, i.e., they differ only on one coordinate. Then, for any given function $f \in \mathcal{F}$:

$$\frac{1}{n} \left| \sum_{i=1}^{n} \bar{f}(x_i) \right| - \sup_{h \in \mathcal{F}} \frac{1}{n} \left| \sum_{i=1}^{n} \bar{h}(y_i) \right| \leq \frac{1}{n} \left| \sum_{i=1}^{n} \bar{f}(x_i) \right| - \frac{1}{n} \left| \sum_{i=1}^{n} \bar{f}(y_i) \right|$$
$$\leq \frac{1}{n} \sum_{i=1}^{n} \left| \bar{f}(x_i) - \bar{f}(y_i) \right|$$
$$\leq \frac{1}{n} \left| \bar{f}(x_j) - \bar{f}(y_j) \right|$$
$$\leq \frac{1}{n} \left| \bar{f}(x_j) \right| + \frac{1}{n} \left| \bar{f}(y_j) \right|$$
$$\leq \frac{2b}{n}$$

This bound is independent of choices x_1^n, y_1^n, f . Therefore we may conclude that:

$$G(x_1^n) - G(y_1^n) \le \frac{2b}{n}$$

Reverse the roles of x_1^n, y_1^n to obtain:

$$|G(x_1^n) - G(y_1^n)| \le \frac{2b}{n}$$

This bound works no matter how complicated G is, but leans heavily on the uniform boundedness condition.

We have shown that $G(\cdot)$ satisfies the bounded differences property. Therefore, by McDiarmid's inequality:

$$\left|\left\|P_{n}-P\right\|_{\mathcal{F}}-\mathbf{E}\left\|P_{n}-P\right\|_{\mathcal{F}}\right| \leq t$$

with probability at least $1 - 2\exp\{-nt^2/2b^2\}$.

Part II. We now control the mean of $||P_n - P||_{\mathcal{F}}$. We will do so by taking the supremum over the function class \mathcal{F} . Unfortunately, this class may consist of infinitely many functions. To handle this, we turn to Rademacher complexity.

Theorem 25.3 Symmetrization. Let \mathcal{F} be a class of integrable functions, i.e., $\mathbf{E}_{X \sim P} |f(X)| < \infty$. Further, denote:

$$||R_n||_{\mathcal{F}} = \sup f \in \mathcal{F} \frac{1}{n} \left| \sum_{i=1}^n \varepsilon_i f(X_i) \right|$$

Then, for any nondescending and convex function $\phi : \mathbf{R}_+ \to \mathbf{R}_+$:

$$\mathbf{E}\left\{\phi(\|P_n - P\|_{\mathcal{F}})\right\} \le \mathbf{E}_{X,\varepsilon}\left\{\phi(2\|R_n\|_{\mathcal{F}})\right\}$$

Moreover,

$$\mathbf{E}\left\{\phi(\|P_n - P\|_{\mathcal{F}})\right\} \ge \mathbf{E}_{X,\varepsilon}\left\{\phi(1/2 \|R_n\|_{\bar{\mathcal{F}}})\right\}$$

where $\bar{\mathcal{F}} = \{f - \mathbf{E} f, f \in \mathcal{F}\}.$

Notice that $R_n(\mathcal{F}) = \mathbf{E}_{X,\varepsilon} ||R_n||_{\mathcal{F}}$. Then if $\phi(x) = x$, we obtain:

$$\mathbf{E} \| P_n - P \| \le 2R_n(\mathcal{F})$$

proving the main theorem.

Proof: Of Theorem 25.3. We only provide the proof of the upper bound; the lower bound follows similarly. Suppose $\underline{X} = (X_1, \ldots, X_n) \perp \underline{\varepsilon} = (\varepsilon_1, \ldots, \varepsilon_n)$. Further suppose a "ghost sample" $\underline{Y} = (Y_1, \ldots, Y_n)$. Then: $\mathbf{E}_X \{ \phi(\|P_n - P\|_{\mathcal{T}}) \}$

$$\begin{split} &= \mathbf{E}_{\underline{X}} \left\{ \phi \left(\sup_{f \in \mathcal{F}} \frac{1}{n} \left| \sum_{i=1}^{n} \left(f(X_i) - \mathbf{E} f(X_i) \right) \right| \right) \right\} \\ &= \mathbf{E}_{\underline{X}} \left\{ \phi \left(\sup_{f \in \mathcal{F}} \frac{1}{n} \left| \sum_{i=1}^{n} \left(f(X_i) - \mathbf{E} f(Y_i) \right) \right| \right) \right\} \\ &\leq \mathbf{E}_{\underline{X},\underline{Y}} \left\{ \phi \left(\sup_{f \in \mathcal{F}} \frac{1}{n} \left| \sum_{i=1}^{n} \left(f(X_i) - f(Y_i) \right) \right| \right) \right\} \qquad (\text{Jensen}) \\ &= \mathbf{E}_{\underline{X},\underline{Y},\varepsilon} \left\{ \phi \left(\sup_{f \in \mathcal{F}} \frac{1}{n} \left| \sum_{i=1}^{n} \varepsilon_i \left(f(X_i) - f(Y_i) \right) \right| \right) \right\} \qquad (f(X_i) - f(Y_i) \stackrel{d}{=} \varepsilon_i (f(X_i) - f(Y_i))) \\ &\leq \mathbf{E}_{\underline{X},\underline{Y},\varepsilon} \left\{ \phi \left(\sup_{f \in \mathcal{F}} \frac{1}{n} \left| \sum_{i=1}^{n} \varepsilon_i f(X_i) \right| + \left| \sum_{i=1}^{n} \varepsilon_i - f(Y_i) \right| \right) \right\} \qquad (\text{Triangle}) \\ &\leq \mathbf{E}_{\underline{X},\underline{Y},\varepsilon} \left\{ \frac{1}{2} \phi \left(\sup_{f \in \mathcal{F}} \frac{1}{n} \left| \sum_{i=1}^{n} \varepsilon_i f(X_i) \right| \right) + \frac{1}{2} \phi \left(\sup_{f \in \mathcal{F}} \frac{2}{n} \left| \sum_{i=1}^{n} \varepsilon_i - f(Y_i) \right| \right) \right\} \qquad (\text{Convexity}) \\ &= \mathbf{E}_{\underline{X},\varepsilon} \left\{ \phi \left(\sup_{f \in \mathcal{F}} \frac{2}{n} \left| \sum_{i=1}^{n} \varepsilon_i f(X_i) \right| \right) \right\} \end{aligned}$$

The lower bound follows the same argument. Due to the lower bound, we obtain the following corollary.

Corollary 25.4 If $\|\mathcal{F}\|_{\infty} \leq b$, then

$$\|P_n - P\|_{\mathcal{F}} \ge \frac{1}{2}R_n(\mathcal{F}) - \frac{\sup_{f \in \mathcal{F}} |\mathbf{E} f(X)|}{2\sqrt{n}} - t$$

with probability at least $1 - \exp\{-nt^2/2b^2\}$.

It follows immediately that $||P_n - P||_{\mathcal{F}} \xrightarrow{p} 0 \Leftrightarrow R_n(\mathcal{F}) \xrightarrow{n \to \infty} 0$. If \mathcal{F} is the Glivenko-Cantelli class of functions, then we satisfy $R_n(\mathcal{F}) \xrightarrow{n \to \infty}$

25.2 Polynomial Discrimination

Our concern now becomes controlling $R_n(\mathcal{F})$.

Definition 25.5 Polynomial discrimination. A class \mathcal{F} of $f : \mathcal{X} \to \mathbf{R}$ has polynomial discrimination with parameter $\nu \geq 1$ if, for all $n, x_1^n = x_1, \ldots, x_n \in \mathcal{X}$:

$$\mathcal{F}(x_1^n) = \{ (f(x_1), \dots, f(x_n)) \in \mathbf{R}^n, f \in \mathcal{F} \} \subseteq \mathbf{R}^n$$

has cardinality $\leq (n+1)^{\nu}$.

Lemma 25.6 If \mathcal{F} has polynomial discrimination with parameter ν , then for any $x_1^n = x_1, \ldots, x_n$:

$$\mathbf{E}_{\underline{\varepsilon}}\left\{\sup_{f\in\mathcal{F}}\frac{1}{n}\left|\sum_{i=1}^{n}\varepsilon_{i}f(x_{i})\right|\right\} \leq D(x_{1}^{n})\sqrt{2\nu\frac{\log(n+1)}{n}}$$

where $D(x_1^n) = \sup_{f \in \mathcal{F}} \sqrt{\frac{1}{n} \sum_{i=1}^n f^2(x_i)}.$

Remark. This does not require the boundedness assumption. If $||f||_{\infty} \leq b$ for all $f \in \mathcal{F}$, then $D_{(x_1^n)} \leq b$.

Example. Consider the function class:

$$\mathcal{F} = \{\mathbf{1}_{(-\infty,z)}(\cdot), z \in \mathbf{R}\}$$

Observe that $\mathbf{E} f = \mathbf{P} \{ X \leq z \}.$

This class of functions has polynomial discrimination with parameter $\nu = 1$. To see this, let $x_1, \ldots, x_n \in \mathbf{R}^n$. This splits **R** into at most n + 1 intervals:

$$(-\infty, x_{(1)}, \ldots, x_{(n)}, \infty)$$

Therefore, we may bound the empirical process:

$$\mathbf{P}\left\{\left\|\hat{F}_n - F\right\|_{\infty} \ge 4\sqrt{\frac{\log(n+1)}{n}} + t\right\} \le \exp\left\{-\frac{nt^2}{2}\right\}$$

Remark. For a sharper bound, use the DKW inequality.