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In section 20.1, we review oracle inequality and give the proof of the Oracle inequality for Ordinary Least
Squares.

In section 20.2, we introduce the Oracle inequality for Lasso.

20.1 Oracle inequality for Ordinary Least Squares

Here are some notes for Oracle inequality

• Only consider estimator of the form fθ =
∑m
j=1 θjfj(·), where (θ1, · · · , θm) ∈ K ⊆ Rm

• Quantify the performance of an estimator f̂ = fθ̂ =
∑m
j=1 θ̂jfj(·). In Oracle inequality, we compare

MSE(f̂) with MSE(foracle), where MSE(foracle) = inf
θ∈K

MSE(fθ)

For the Oracle inequality for Ordinary Least Squares (OLS) f̂OLS,

f̂OLS = argmin
θ∈Rm

fθ =
1

n

n∑
i=1

(yi − fθ(xi))2 =
1

n
(y −Xθ)2

where Xij = fj(xi), f : Rd → R, f = (f(x1), · · · , f(xn))>

Lemma 20.1 Assume for each i, εi ∈ SG(σ2), then for δ ∈ (0, 1), with probability at least 1− δ,

MSE(f̂OLS) ≤ inf
θ∈Rm

MSE(fθ)︸ ︷︷ ︸
MSE(fOracle)

+Cσ2m+ log( 1
δ )

n

where C > 0 is universal constant.

Proof: Firstly, use basic inequality:

1

n
(y − f̂OLS)2 ≤ 1

n
(y − f̂oracle)2

Plug in y = f∗ + ε, we have

1

n
(f∗ − f̂OLS)2 − 1

n
(f∗ − foracle)2 ≤ 2ε>

n
(f̂OLS − foracle)

→ 1

n
(foracle − f̂OLS)2 ≤ 2ε>

n
(f̂OLS − foracle)
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Since by Trigonometric theorem: a2 + b2 = c2, we have

(f∗ − f̂OLS)2 − (f∗ − foracle)2 = (f̂OLS − foracle)2

So, we obtain

1

n

∥∥∥foracle − f̂OLS)
∥∥∥

2
≤ 2ε>

n

(f̂OLS − foracle)∥∥∥(f̂OLS − foracle)
∥∥∥

2

≤ Cσ2m+ log(1/δ)

n

Using the prrof of MSE bound for OLS, we get the result.

20.2 Oracle Inequality for Lasso

In this section, we give the oracle inequality for Lasso.

Lemma 20.2 Assume

1) for each i, εi ∈ SG(σ2) independently,

2) for any S ⊆ {1, · · · , d}, S 6= Ø, s.t |S| ≤ k, The design matrix satisfy the RE(α, κ, S), which means
‖X∆‖2
n ≥ κ ‖∆‖2, for ∆ ∈ Cα(S) = {∆ : ‖∆Sc‖1 ≤ α ‖∆S‖1}

Then, if λn ≥
2‖X>ε‖∞

n

MSE(f̂Lasso) ≤ inf
θ∈Rm,s.t‖θ‖0≤k

{1 + α

1− α
MSE(fθ) +

9

2α(1− α)κ
‖θ‖0 λ

2
n}

where λ is any number in (0, 1)

So by this lemma, we can know Lasso is not a good tool to do subset selection, but is good at prediction.
Lasso is as good as best subset selection under sparse linear model.

Proof: As usual, let’s start with basic inequality: that holds for any θ ∈ Rm:

1

2n

∥∥∥y − f̂θ∥∥∥2

+ λn

∥∥∥θ̂∥∥∥
1
≤ 1

2n
‖y − fθ‖2 + λn ‖θ‖1

Plug in y = f∗ + ε, we obtain

1

n
{
∥∥∥f∗ − f̂θ∥∥∥2

− ‖f∗ − fθ‖2} ≤ λn
[
‖θ‖1 −

∥∥∥θ̂∥∥∥
1

]
+
ε>

n
(fθ̂ − fθ)︸ ︷︷ ︸

A

Recall fθ̂ − fθ = X(θ̂ − θ) = X∆.

If RHS of A ≤ 0,, the proof will be done. If not, then RHS of A > 0, we will follow the proof of the fast rate
for Lasso.
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To conclude that 3 ‖∆S‖1 − ‖∆SC‖ > 0, S = support of θ, so ∆ = θ̂ − θ ∈ C3(S). If 0 < |S| ≤ k, then use

the assumption about RE condition to upper bound of A by 3λ
√
|S| · ‖X∆‖√

n
√
κ

.

Next: use variation inequality:

ab ≤ a2

2β
+
βb2

2
,∀β > 0, a, b ∈ R

Plug in a =
3
√
|S|λ√
κ

, b = ‖X∆‖√
n

=
‖fθ̂−fθ‖√

n
, and we have

∥∥fθ̂ − fθ∥∥2 ≤ 2
[
‖f∗ − fθ‖2 + ‖f∗ − fθ‖2

]

A ≤ 9

2α

|S|λ2

κ
+
λ

n

[
‖f∗ − fθ‖2 + ‖f∗ − fθ‖2

]
Rearranging and taking inf over all θ, s.t ‖θ‖0 ≤ k, we get the result.


