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21.1 Oracle Inequalities

We first return to the proof of the OLS oracle inequality.

Theorem 21.1 For δ ∈ (0, 1), with p ≥ 1− δ, MSE(f̂OLS) ≤ infθ∈RmMSE(fθ) + Cσ2(
M+log( 1

δ )

n )

Proof: Let Y = f∗ + ε. Then

1

n
||Y − f̂ols||2 ≤

1

n
||Y − foracle||2 =

1

n
(||f∗ − f̂ols||2 − ||f∗ − foracle||2) ≤ 2

n
ε′(f̂ols − foracle)

We then divide each side by ||f̂ols − foracle|| to get

(||f∗ − f̂ols||2 − ||foracle − f̂∗||2)

||f̂ols − foracle||
≤ 2ε′(f̂ols − foracle)
||f̂ols − foracle||

≤ 2 sup
v∈Sn−1

ε′ν

Because both f̂ and foracle lie in span{f1, ..., fn}, we can invoke the Pythagorean Theorem conclude

||f∗ − f̂ols||2 − ||foracle − f̂∗||2 = ||f̂ − foracle||2

Substituting this in the LHS and cancelling the square from the denominator, squaring both the LHS and
RHS expressions and dividing by n, we conclude that

1

n
||f̂ − foracle||2 ≤

1

n
(2 sup
v∈Sn−1

ε′ν)2 ≤ σ2m

n

where we get the final inequality from the previous proof of the OLS bound. Again using the Pythagorean
Theorem we substitute back to get that

MSE(f̂) ≤MSE(foracle) +
σ2m

n
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21.2 Principal Components Analysis

Let X ∈ Rd, E(X) = 0, and Cov(X) = Σ, which is a d by d positive semi-definite matrix. Then let i index
the order of the eigenvalues of Σ and U be a d by d orthonormal matrix and Λ is a d by d diagonal matrix
where Λ = diag(λi)i∈1,...,d. We then have that

• λ1 ≥ λ2 ≥ ... ≥ λd ≥ 0

• Σ = UΛU ′

21.2.1 What is PCA?

We now outline three view of principal components analysis (PCA).

21.2.1.1 View 1: Maximal Variance

Find a direction ν ∈ Sd−1 along which X has maximal variance ν∗ = arg maxν∈Sd−1 V ar(ν′X) = ν′Σν. Then
ν∗ is the largest (leading) eigenvector of Σ (1st column of U in the SVD) and is the direction of maximal
variance.

More generally, we can find the r directions of largest variance:

V ∗dxr = arg max
ν∈Vd,r

E||V ′X||2

where Vdxr = {Vdxr w/ orthonormal columns}. Then E||X ′V ||2 =
∑r
j=1 E[(X ′Vj)

2] where VJ is the jth
column of V . The solution V ∗ consists of the first r leading eigenvectors of Σ (or the first r columns of U)
and E||V ∗′X||2 =

∑r
j=1 λr. In other words, the solution is an orthogonal projection of X onto the linear

subspace spanned by ν ∈ Sd−1.

21.2.1.2 View 2: Optimal Projection

Suppose we want to find the optimal linear subspace S of Rd of dimension 1 ≤ r ≤ d such that

E(||X − πsX||2)

is minimal and πsX is a projection of X onto S. Then πs = UrU
′
r where Ur are the first r columns of U

(note that πs is d by d, Ur is d by r). Moreover, we have that

E||X − πsX||2 =

d∑
j=r+1

λj
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21.2.1.3 View 3: Matrix Approximation

We can also think about the matrix Z∗ that minimizes ||Sigma − Z||2F where Z is a matrix such that
rank(Z) ≤ r. Then we have that

Z∗ =

r∑
j=1

λjUjU
′
j

and

||Σ− Z∗||2F =

d∑
j=r+1

λ2j

ie Z is a low-rank approximation to Σ.

21.2.2 Estimating Eigenvalues and Eigenvectors

Our goal is to estimate λ1, ..., λr and u1 ≥ ... ≥ ur. In general we can think of

Σ̂n = Σ + E

where E is not necessarily positive definite. Then the problem becomes

λmax(Σ̂) = λmax(Σ + E) ≤ λmax(Σ) + ||E||op

In fact, |λmax(Σ)−λmax(Σ̂)| ≤ ||E||op and Weyl’s Inequality (which has a non-obvious proof) further provides
us with a uniform bound on the target eigenvalues and the observed perturbed eigenvalues

max
j
|λj(Σ)− λj(Σ̂)| ≤ ||E||op

Notice that ||E||op = ||Σ̂n−Σ||op, a quantity we’ve already studied. In brief, estimating λi is relatively easy;
by contrast, estimating Ui is difficult.

We illustrate the difficulty of estimating eigenvalues through the following example:

A = I2 +

(
ε 0
0 ε

)

B = I2 +

(
0 ε
ε 0

)
We see that limε→0A = I2 and limε→0B = I2. Moreover, in both cases ||E||op = ε.

However, for A the eigenvalues are (1, 0) and (0, 1) (our target subspace), while for B the eigenvalues are
1 + ε and 1− ε. In general, PCA might fail when the eigenvectors are too close to each other. Next lecture



21-4 Lecture 21: April 4, 2019

we will discuss how to measure the distance between subspaces so that we can consider the problem of
estimating them.


