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They may be distributed outside this class only with the permission of the Instructor.

This lecture’s notes illustrate some uses of various LATEX macros. Take a look at this and imitate.

22.1 Announcements before class

Final exam: last day of classes, THU, May 2, 1 hour and 20 mins (not 3 hours this time), open books, open
notes, open laptops (no internet). Some practice exams will be sent soon.

A new homework will be posted soon.

22.2 Distance between linear sub-spaces

Last time we talked about one issue with PCA: how well the eigenspace approximate the original covariance
matrix. Today we will discuss the distance between linear sub-spaces first.

Let E and F be d-dimensional sub-spaces in Rp, let PE and PF be the projection matrices onto E and F.

PE⊥ = I− PE

PE⊥ = I− PE

E and F are p× d matrices with orthonormal columns, whose column ranges are E and F .

Then we have:

PE = EE⊥

PF = FF⊥

Let v1 and v2 be unit vectors in Rp, the angle between v1 and v2 is:

∠(v1, v2) = cos−1|vT1 v2|

That is:

cos(∠(v1, v2)) = |vT1 v2|
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Definition 22.1 The canonical/principle angle between two sub-spaces E and F are the θ1 = cos−1(σ1), ...,
θd = cos−1(σd), where σ1 ≥ σ2 ≥ ... ≥ σd ≥ 0 are the singular values of ETF or FTE. Therefore, we have:

ETF = Ucos(Θ)V

Θ =

θ1 0
. . .

0 θd.


We can also have an equivalent definition:

Definition 22.2 The first canonical angle is:

cos−1(max
x∈E

max
y∈F
|xT y|)

subject to:

||x|| = ||y|| = 1

For k = 2, ..., d, the k-th canonical angle is:

cos−1(max
x∈E

max
y∈F
|xT y|)

subject to:

||x|| = ||y|| = 1 and yT yi = xTxi = 0 for any i=1,...,k-1

where (xk, yk) is a pair realizing the k-th canonical angle.

We could equivalently give another definition:

Definition 22.3 Let θi = sin−1(si) for i = 1, ..., d, where s1 ≥ ... ≥ sd ≥ 0 are the singular values of
PEPF⊥ or PFPE⊥ . (PEPF⊥ = Usin(Θ)V T )

Now given the definition of the canonical angles, we can define the distance between sub-spaces E and F :

Definition 22.4 The distance between E and F is ||sin(Θ)||F = ||sin(Θ(E ,F))||F .

Then we have:

||sin(Θ)||F = ||PEPF⊥ ||2F = ||PE(I− PF )||2F = ||PF (I− PE)||2F =
1

2
||PF − PE ||2F

22.3 Davis-Kahan Theorem

Theorem 22.5 (Davis-Kahan Theorem) Let Σ and Σ̂ be p× p symmetric matrices with eigenvalues:

λ1 ≥ λ2 ≥ ... ≥ λp
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and:

λ̂1 ≥ λ̂2 ≥ ... ≥ λ̂p

Fix 1 ≤ r ≤ s ≤ p, and let d = s− r + 1, let V and V̂ be p× d matrices consisting of the eigenvectors of Σ
and Σ̂ corresponding to eigenvalues λr, ..., λs and λ̂r, ..., λ̂s. Let:

δ = inf{|λ− λ̂|, λ ∈ [λs, λr], λ̂ ∈ (−∞, λ̂s+1]
⋃

[λ̂r−1,+∞)}

Here we define λ̂0 = λ0 = +∞ and λ̂p+1 = λp+1 = −∞.

If δ > 0, then:

||sin(Θ(E ,F))||F ≤
||Σ− Σ̂||F

δ

The Frobenius Norm || · ||F used in the theorem can be replaced by operator norm || · ||op.

Let’s assume γn be s.t. ||Σ− Σ̂||op ≤ γn with high probability, and also assume that:

|λ̂s+1 − λs| ≥ λs − λs+1 − γn ≥ 0

and:

|λ̂r−1 − λr| ≥ λr−1 − λr − γn ≥ 0

The eigen-gap δ∗ = min{λs − λs+1, λr−1 − λr} ≥ γn, then the bound is ||Σ−Σ̂||F
δ∗−γn .

Typically, when r = 1 and s = d < p, which gives δ∗ = λd − λd+1, Yu, Wang & Samworth (A useful variant
of the Davis-Kahan theorem for statisticians ) proved that:

||sin(Θ(E ,F))||F ≤
2 min{

√
d||Σ− Σ̂||op, ||Σ− Σ̂||F }

min{λs − λs+1, λr−1 − λr}

Also, ∃O be d× d orthogonal matrix such that:

||V̂ O − V ||F ≤
2

3
2 min{

√
d||Σ− Σ̂||op, ||Σ− Σ̂||F }

min{λs − λs+1, λr−1 − λr}

if r = s = 1, then:

sin∠(v1, v̂1) ≤ 2||Σ− Σ̂||F
λ1 − λ2

and:

min
ε∈{−1,1}

||εv̂1 − v1|| ≤ 2
3
2
||Σ− Σ̂||F
λ1 − λ2

22.3.1 Spiked Covariance Model

Let p× p matrix Σ = θvvT + Ip, θ > 0 and ||v|| = 1, then we can know that 1 + θ is the leading eigenvalue
and v is the leading eigenvector.
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Σ is the covariance matrix of v(vTX) + Z where Z ∼ Np(0, I) and X ∼ Np(0, I), Z ⊥ X.

Let Y1, Y2, .., Yn ∼ (0,Σ) are sub-Gaussian random variables with parameter ||Σ||op = 1 + θ, then we have:

min
ε∈{−1,1}

||v̂ε− v|| ≤ C 1 + θ

θ
max{

√
p+ ln 1

δ

n
,
p+ ln 1

δ

n
}

with probability at least 1− δ. Here, v̂ is the leading eigenvector of Σni=1
yiy

T
i

n .


