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In this lecture, we prove the bounded differences inequality and give an example of its application. We then
begin our discussion of density estimation.

5.1 The bounded differences inequality

Recall the bounded differences property we defined in the previous lecture.

Definition: We say that a function f : Rn → R satisfies the bounded differences property (BDP) if
∃L1, . . . , Ln > 0 s.t. for any (X1, . . . , Xn) in the domain of f , for any coordinate k,

sup
x′,y′
|f(x1, . . . , xk−1, y

′, xk+1, . . . , xn)− f(x1, . . . , xk−1, x
′, xk+1, . . . , xn)| ≤ Lk

Now, we show that functions of random variables that satisfy the BDP concentrate around their expectations.

Theorem (Bounded Differences Inequality): Let X1, . . . , Xn be independent random variables, and
let f : Rn → R be a function that satisfies the BDP as defined above, with constants L1, . . . , Ln. Then

P(|Z − E[Z]| > t) ≤ 2 exp
(
− 2t2∑n

k=1 L
2
k

)
where Z = f(X1, . . . , Xn).

Proof: Suppose D1, . . . , Dn is a martingale difference sequence, and suppose that ak ≤ Dk ≤ bk, ∀k
a.e. for sequences of constants {ak} and {bk}. Then by the Azuma-Hoeffding inequality, we have

P
(∣∣∣ n∑

k=1

Dk

∣∣∣ > t
)
≤ 2 exp

(
− 2t2∑n

k=1(bk − ak)2

)
, ∀t > 0

Let
Dk = E[Z|X1, . . . , Xk]− E[Z|X1, . . . , Xk−1], k > 1

D0 = E[Z]

Then Z − E[Z] =

n∑
k=1

Dk. Note that D1, . . . , Dn form a martingale difference sequence.

Now, for each k = 1, . . . , n, define

An = inf
x

{
E[Z|X1, . . . , Xk−1, x]− E[Z|X1, . . . , Xk−1]

}
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Bn = sup
x

{
E[Z|X1, . . . , Xk−1, x]− E[Z|X1, . . . , Xk−1]

}
Observe that

Dk −Ak = E[Z|X1, . . . , Xk]− inf
x

{
E[Z|X1, . . . , Xk−1, x]

}
≥ 0 a.e.

Similarly,

Bk −Dk = sup
x

{
E[Z|X1, . . . , Xk−1, x]

}
− E[Z|X1, . . . , Xk] ≥ 0 a.e.

In other words, for sequences of random variables {Ak} and {Bk}, it holds that Ak ≤ Dk ≤ Bk, ∀k a.e.

Finally, we unpack Bk −Ak for each k, and show that it is ≤ Lk, using the independence assumption.

Bk −Ak = sup
x

{
E[Z|X1, . . . , Xk−1, x]

}
− inf

y

{
E[Z|X1, . . . , Xk−1, y]

}

= sup
x

{∫
f(X1, . . . , Xk−1, x, xk+1, . . . , xn) dP (xk+1, . . . , xn|X1, . . . , Xk−1, x)

}
− inf

y

{∫
f(X1, . . . , Xk−1, y, xk+1, . . . , xn) dP (xk+1, . . . , xn|X1, . . . , Xk−1, y)

}
Let x∗ and y∗ be the (random) numbers that achieve the sup and inf over z, respectively, of∫

f(X1, . . . , Xk−1, z, xk+1, . . . , xn) dP (xk+1, . . . , xn|X1, . . . , Xk−1, z)

Note that in general,

dP (xk+1, . . . , xn|X1, . . . , Xk−1, x
∗) 6= dP (xk+1, . . . , xn|X1, . . . , Xk−1, y

∗)

unless X1, . . . , Xn are independent, in which case both expressions are equal to

dP (xk+1) . . . dP (xn)

But the theorem does assume that X1, . . . , Xn are independent, so we have that

Bk −Ak = sup
x

{∫
f(X1, . . . , Xk−1, x, xk+1, . . . , xn) dP (xk+1, . . . , xn|X1, . . . , Xk−1, x)

}

− inf
y

{∫
f(X1, . . . , Xk−1, y, xk+1, . . . , xn) dP (xk+1, . . . , xn|X1, . . . , Xk−1, y)

}
= sup

x

{∫
f(X1, . . . , Xk−1, x, xk+1, . . . , xn) dP (xk+1) . . . dP (xn)

}
− inf

y

{∫
f(X1, . . . , Xk−1, y, xk+1, . . . , xn) dP (xk+1) . . . dP (xn)

}
≤ sup

x1,...,xk−1,xk+1,...,xn,x,y

{∣∣∣f(x1, . . . , xk−1, x, xk+1, . . . , xn)− f(x1, . . . , xk−1, y, xk+1, . . . , xn)
∣∣∣}

≤ Lk, ∀k a.e.

and the claim follows.
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5.2 Application of the bounded differences inequality

Example: Let Gn be an Erdos-Renyi graph on n nodes. Let the

(
n

2

)
potential edges be i.i.d. Bernoulli

random variables, where 1 indicates the presence of an edge and 0 indicates its absence. Let Cn be the clique
number, i.e. the size of the largest complete subgraph.

We show that Cn concentrates around its expectation. Note that Cn can be thought of as the result of

a function applied to all of the

(
n

2

)
potential edges of the graph. This function satisfies the BDP, because

if we only change one edge at a time while keeping all other edges fixed, then Cn changes by at most 1. In
other words, Lk = 1, ∀k. It follows that

P
(∣∣∣Cn

n
− E

[Cn

n

]∣∣∣ ≥ t
)

= P
(
|Cn − E[Cn]| ≥ nt

)
≤ 2 exp

(
− 2n2t2∑n

k=1 1

)
= 2 exp(−2nt2), ∀t > 0

Example: We could also consider Tn, the number of triangles in the graph. Note that if Tn is the result of

a function applied to all of the

(
n

2

)
potential edges, then changing one edge at a time can change the value

of Tn by as much as n− 2. So here, we cannot apply the BDP in a meaningful way.

5.3 Introduction to density estimation

We now turn our attention to a different type of problem. Let X1, . . . , Xn
i.i.d.∼ f where f is an unknown

density. We seek to estimate f using our sample. Note that f is a point not in Euclidean space, but in a
functional space, which makes density estimation a complex problem.

One type of density estimator is called the kernel density estimator.

Definition: Let K : R → R+ be a function such that

∫
R
K(x)dx = 1. Then for a parameter h > 0

known as the bandwidth, define the kernel density estimator as

f̂h(x) =
1

nh

n∑
k=1

K
(Xk − x

h

)
, x ∈ R

In other words, we are simply convolving the empirical measure (consisting of point masses at the observed
data points) with a kernel function to “smooth it out”.

Let us define a function x → fh(x) as the pointwise expectation E[f̂h(x)] at every x. Then fh(x) is a
deterministic probability density, determined by the kernel function K and the choice of bandwidth h.

Note that there are two levels of approximation here: the deviation f̂h(x) − fh(x) representing the vari-
ance, and the deviation fh − f representing the bias. As h→ 0, the bias → 0 and the variance →∞.

We never explicitly observe the bias because we obviously do not know the true underlying function f .
If we make certain smoothness assumptions about f belonging to a particular class of functions (e.g. a
Holder class), we can derive expressions for both the bias and variance, which lead to well-known results on
the optimal choice of bandwidth h as a function of n, and the resulting optimal rate of convergence.
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Note that the above well-known results usually consider convergence rates in the sense of mean squared
error, or L2 error defined in terms of the L2 norm:

‖f̂h(x)− fh(x)‖2 =

√∫
(f̂h(x)− fh(x))2dx

The L2 norm is popular because it is convenient to work with computationally, but a more natural way of
thinking statistically about how “well” f̂h approximates fh is the L1 norm:

‖f̂h(x)− fh(x)‖1 =

∫
|f̂h(x)− fh(x)|dx = 2dTV (P̂h, Ph) = 2 sup

A∈A
|P̂h(A)− Ph(A)|

where dTV (P,Q) is the TV distance between probability measures P and Q. Note that TV distance defines
a very strong notion of similarity, as it considers the subset of the domain over which the two measures differ
the most. So two measures that are close in TV distance are very similar over all possible subsets we might
take over the domain.

Unfortunately, the L1 norm is inconvenient to work with in practice because it is difficult to compute.
For reference, see [DL01] for various methods to compute and use the L1 norm in density estimation.

We conclude today by noting that the L1 distance satisfies the BDP, with Lk =
2

n
, ∀k, since

f(x1, . . . , xk−1, x, xk+1, . . . , xn)− f(x1, . . . , xk−1, y, xk+1, . . . , xn) ≤ 1

nh

∫ ∣∣∣K(x− z

h

)
−K

(y − z

h

)∣∣∣ dz
≤ 1

nh

[
h

∫
K(w)dw + h

∫
K(v)dv

]
=

2

n

using the substitutions w =
x− z

h
and v =

y − z

h
.

It follows that

P
(∣∣∣L1(f̂h, fh)− E[L1(f̂h, fh)]

∣∣∣ > t
)
≤ 2 exp

(
− nt2

2

)
, ∀t > 0

The remarkable thing is that this concentration property holds regardless of the choice of bandwidth h.

Of course, in this case, it is easy to show that L1(f̂h, fh) concentrates around its expectation, but, as
we have noted, difficult to actually compute what that expectation is.
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