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6.1 Notes on Regression

Let Y1, · · · , Yn be independent response variable in R. In particular,

Yi = E[Yi] + εi, εi ∈ SG(σ2)

Suppose we observed n covariates (x1, · · · , xn) ⊆ Rd; fixed. Further assume that the first coordinate of each
xi be 1. Consider a following model :

Yi = f(Xi) + ηi, f : Rd → R, E(ηi) = 0

The model specification need not be linear, however we often choose f(xi) = x>i γ, γ ∈ Rd for the brevity.
Under the squared error loss, our goal is to solve the following problem:

min
γ

n∑
i=1

E(yi − x>i γ)2

Let β be the minimizer of the problem. Assuming Σn = 1
n

∑n
i=1 xix

>
i be full rank,

β = Σ−1n
1

n

n∑
i=1

xiµi = (X>X)−1X>µ

where Y = (Y1, · · · , Yn)>, X = (x1, · · · , xn)> ⊆ Rn×d, µ = (µ1, · · · , µn)> and µi := E[Yi]. With empirical

risk minimization, we estimate β with β̂ = (X>X)−1X>Y . Note that the excess risk R(γ) becomes

R(γ) = E

[
1

n

n∑
i=1

(Yi − x>i γ)2 − 1

n

n∑
i=1

(Yi − x>i β)2

]

See [HKZ12] for the probabilistic bound on R(γ) and details.
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6.2 Concentration of L-Lipschitz function of Gaussian vectors

Recall from Mill’s ratio,

X ∼ N(µ, σ2) =⇒ P(|X − µ| ≥ t) ≤ 2 exp

(
− t2

2σ2

)
, t > 0

Definition 6.1 (Lipschitz Condition) f : Rd → R satisfies L-Lipschitz condition with respect to Eu-
clidean norm, if

∃L ∈ R s.t. |f(x)− f(y)| ≤ L‖x− y‖, ∀x,y ∈ Rd

Theorem 6.2 Let f : Rd → R be L-Lipschitz. Suppose Z := (Z1, · · · , Zd)> ∼ Nd(0, σ
2Id). Then

P (|f(Z)− E[f(Z)]| ≥ t) ≤ 2 exp

(
− t2

2σ2L2

)
, t > 0

That is, f(Z) ∈ SG
(
σ2L2

)
The take-home message is that the concentration of any L-Lipschitz function of isotropic Gaussian random
vector is like a scalar Gaussian variable with variance σ2L2 independent to the dimension d.

Remark. Historically, E(·) was M(·) where M denotes a median operator. See [BLM13] for detail.

Remark. Theorem 6.2 holds even when d→∞, which essentially is an isotropic Gaussian Process.

Corollary 6.3 Let X = (X1, · · · , Xd) be i.i.d. random variables with Xi ∼ Unif[0, 1]. Suppose f : Rd → R
be L-Lipschitz. Then,

P (|f(X)− E[f(X)]| ≥ t) ≤ 2 exp

(
− t2

2L2
α

)
where Lα depends on L.

Proof: Use inverse CDF method.

Maxima of Gaussians

Lemma 6.4 Let Y := (Y1, · · · , Yd)> ∼ Nd(0,Σ), Σ ∈ S+
d

P
(∣∣∣max

i
Yi − E(max

i
Yi)
∣∣∣ ≥ t) ≤ 2 exp

(
− t2

2σ2
max

)
, t > 0

where σ2
max = maxi Σii

Proof: Let Y = Σ1/2z where Σ1/2 is a square root of Σ, i.e, Σ = Σ1/2(Σ1/2)> and z ∼ Nd(0, Id).

Claim: f : x ∈ Rd 7→ maxi(Σ
1/2x)i is L-Lipschitz with L = maxi

√
Σii

Fix coordinate i and let Σ
1/2
i be the ith row of Σ1/2. For all x,y ∈ Rd∣∣∣(Σ1/2x)i − (Σ1/2y)i

∣∣∣ =
∣∣∣Σ1/2
i (x− y)

∣∣∣ ≤√Σ
1/2
i

(
Σ

1/2
i

)>
· ‖x− y‖ (∵ Cauchy-Schwartz Ineq.)

=
√

Σii · ‖x− y‖
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Theorem 6.5 (Talagrand) Let X = (X1, · · · , Xd)
> be independent random variable with Xi ∈ [0, 1],∀i.

Suppose f : Rd → R be L-Lipschitz with respect to Euclidean norm and f be convex function. Then,

P (|f(X)− E[f(X)]| ≥ t) ≤ 2 exp

(
− t2

2L2

)
, t > 0

As in Theorem 6.2, E can be replaced to M. Theorem 6.5 is a corollary of Convex Distance Inequality [T95].
See [BLM13] for detail.

Theorem 6.6 (Convex Distance Inequality) For any subset A ⊆ Xn

P(X ∈ A)P

(
sup

α∈[0,∞)n:‖α‖=1

dα(X,A) ≥ t

)
≤ exp(−t2/4)

where dα(x,A) = infy∈A
∑
i:xi 6=yi |αi| s.t. α ∈ [0,∞)n; weighted Hamming distance.

6.3 Prelude to the Next topic

Until now, we consider index set I to be finite, i.e., |I| < ∞. However, often we need to bound either in
probability or in expectation of the form maxi∈I Xi or maxi∈I |Xi| where |I| = ∞ under the assumption
Xi ∈ SG(·) or SE(·). One strategy is to approximate maxi∈I Xi with finite covers of a ball where the
maximum within the ball be bounded by that within the covers.
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