36-709: Advanced Statistical Theory

Lecture 6: February 14

Lecturer: Alessandro Rinaldo

Scribes: Beomjo Park

Spring 2019

Note: LaTeX template courtesy of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

6.1 Notes on Regression

Let Y_1, \dots, Y_n be independent response variable in \mathbb{R} . In particular,

$$Y_i = \mathsf{E}[Y_i] + \epsilon_i, \qquad \epsilon_i \in \mathrm{SG}(\sigma^2)$$

Suppose we observed *n* covariates $(x_1, \dots, x_n) \subseteq \mathbb{R}^d$; fixed. Further assume that the first coordinate of each x_i be 1. Consider a following *model*:

$$Y_i = f(X_i) + \eta_i, \qquad f : \mathbb{R}^d \to \mathbb{R}, \qquad \mathsf{E}(\eta_i) = 0$$

The model specification need not be linear, however we often choose $f(x_i) = x_i^\top \gamma$, $\gamma \in \mathbb{R}^d$ for the brevity. Under the squared error loss, our goal is to solve the following problem:

$$\min_{\gamma} \sum_{i=1}^{n} \mathsf{E}(y_i - x_i^{\top} \gamma)^2$$

Let β be the minimizer of the problem. Assuming $\Sigma_n = \frac{1}{n} \sum_{i=1}^n x_i x_i^{\top}$ be full rank,

$$\beta = \sum_{n=1}^{n} \frac{1}{n} \sum_{i=1}^{n} x_i \mu_i = (X^{\top} X)^{-1} X^{\top} \mu$$

where $\mathbf{Y} = (Y_1, \dots, Y_n)^{\top}$, $\mathbf{X} = (x_1, \dots, x_n)^{\top} \subseteq \mathbb{R}^{n \times d}$, $\boldsymbol{\mu} = (\mu_1, \dots, \mu_n)^{\top}$ and $\mu_i := \mathsf{E}[Y_i]$. With empirical risk minimization, we estimate β with $\hat{\beta} = (\mathbf{X}^{\top} \mathbf{X})^{-1} \mathbf{X}^{\top} \mathbf{Y}$. Note that the excess risk $R(\gamma)$ becomes

$$R(\gamma) = \mathsf{E}\left[\frac{1}{n}\sum_{i=1}^{n} (Y_{i} - x_{i}^{\top}\gamma)^{2} - \frac{1}{n}\sum_{i=1}^{n} (Y_{i} - x_{i}^{\top}\beta)^{2}\right]$$

See [HKZ12] for the probabilistic bound on $R(\gamma)$ and details.

6.2 Concentration of *L*-Lipschitz function of Gaussian vectors

Recall from Mill's ratio,

$$X \sim \mathcal{N}(\mu, \sigma^2) \implies \mathsf{P}(|X - \mu| \ge t) \le 2 \exp\left(-\frac{t^2}{2\sigma^2}\right), \qquad t > 0$$

Definition 6.1 (Lipschitz Condition) $f : \mathbb{R}^d \to \mathbb{R}$ satisfies L-Lipschitz condition with respect to Euclidean norm, if

$$\exists L \in \mathbb{R} \ s.t. \ |f(\boldsymbol{x}) - f(\boldsymbol{y})| \leq L \|\boldsymbol{x} - \boldsymbol{y}\|, \qquad \forall \boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^d$$

Theorem 6.2 Let $f : \mathbb{R}^d \to \mathbb{R}$ be L-Lipschitz. Suppose $\mathbf{Z} := (Z_1, \cdots, Z_d)^\top \sim \mathrm{N}_d(\mathbf{0}, \sigma^2 I_d)$. Then

$$\mathsf{P}\left(\left|f(\boldsymbol{Z}) - \mathsf{E}[f(\boldsymbol{Z})]\right| \ge t\right) \le 2\exp\left(-\frac{t^2}{2\sigma^2 L^2}\right), \qquad t > 0$$

That is, $f(\mathbf{Z}) \in SG(\sigma^2 L^2)$

The take-home message is that the concentration of any *L*-Lipschitz function of isotropic Gaussian random vector is like a scalar Gaussian variable with variance $\sigma^2 L^2$ independent to the dimension *d*.

Remark. Historically, $\mathsf{E}(\cdot)$ was $\mathsf{M}(\cdot)$ where M denotes a median operator. See [BLM13] for detail.

Remark. Theorem 6.2 holds even when $d \to \infty$, which essentially is an isotropic Gaussian Process.

Corollary 6.3 Let $\mathbf{X} = (X_1, \dots, X_d)$ be i.i.d. random variables with $X_i \sim \text{Unif}[0, 1]$. Suppose $f : \mathbb{R}^d \to \mathbb{R}$ be L-Lipschitz. Then,

$$\mathsf{P}\left(\left|f(\boldsymbol{X}) - \mathsf{E}[f(\boldsymbol{X})]\right| \ge t\right) \le 2\exp\left(-\frac{t^2}{2L_{\alpha}^2}\right)$$

where L_{α} depends on L.

Proof: Use inverse CDF method.

Maxima of Gaussians

Lemma 6.4 Let $\mathbf{Y} := (Y_1, \cdots, Y_d)^\top \sim \mathcal{N}_d(\mathbf{0}, \Sigma), \ \Sigma \in S_d^+$ $\mathsf{P}\left(\left|\max_i Y_i - \mathsf{E}(\max_i Y_i)\right| \ge t\right) \le 2\exp\left(-\frac{t^2}{2\sigma_{\max}^2}\right), \qquad t > 0$

F

where $\sigma_{\max}^2 = \max_i \Sigma_{ii}$

Proof: Let $\boldsymbol{Y} = \Sigma^{1/2} \boldsymbol{z}$ where $\Sigma^{1/2}$ is a square root of Σ , i.e, $\Sigma = \Sigma^{1/2} (\Sigma^{1/2})^{\top}$ and $\boldsymbol{z} \sim N_d(\boldsymbol{0}, I_d)$. *Claim:* $f : \boldsymbol{x} \in \mathbb{R}^d \mapsto \max_i (\Sigma^{1/2} \boldsymbol{x})_i$ is *L*-Lipschitz with $L = \max_i \sqrt{\Sigma_{ii}}$

Fix coordinate i and let $\Sigma_i^{1/2}$ be the *i*th row of $\Sigma^{1/2}$. For all $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^d$

$$\begin{aligned} \left| (\Sigma^{1/2} \boldsymbol{x})_i - (\Sigma^{1/2} \boldsymbol{y})_i \right| &= \left| \Sigma_i^{1/2} (\boldsymbol{x} - \boldsymbol{y}) \right| \le \sqrt{\Sigma_i^{1/2} \left(\Sigma_i^{1/2} \right)^\top} \cdot \| \boldsymbol{x} - \boldsymbol{y} \| \qquad (\because \text{Cauchy-Schwartz Ineq.}) \\ &= \sqrt{\Sigma_{ii}} \cdot \| \boldsymbol{x} - \boldsymbol{y} \| \end{aligned}$$

Theorem 6.5 (Talagrand) Let $\mathbf{X} = (X_1, \dots, X_d)^{\top}$ be independent random variable with $X_i \in [0, 1], \forall i$. Suppose $f : \mathbb{R}^d \to \mathbb{R}$ be L-Lipschitz with respect to Euclidean norm and f be convex function. Then,

$$\mathsf{P}\left(|f(\boldsymbol{X}) - \mathsf{E}[f(\boldsymbol{X})]| \ge t\right) \le 2\exp\left(-\frac{t^2}{2L^2}\right), \qquad t > 0$$

As in Theorem 6.2, E can be replaced to M. Theorem 6.5 is a corollary of *Convex Distance Inequality* [T95]. See [BLM13] for detail.

Theorem 6.6 (Convex Distance Inequality) For any subset $A \subseteq \mathcal{X}^n$

$$\mathsf{P}(X \in A)\mathsf{P}\left(\sup_{\alpha \in [0,\infty)^n : \|\alpha\|=1} d_{\alpha}(X,A) \ge t\right) \le \exp(-t^2/4)$$

where $d_{\alpha}(x, A) = \inf_{y \in A} \sum_{i: x_i \neq y_i} |\alpha_i|$ s.t. $\alpha \in [0, \infty)^n$; weighted Hamming distance.

6.3 Prelude to the Next topic

Until now, we consider index set \mathcal{I} to be finite, i.e., $|\mathcal{I}| < \infty$. However, often we need to bound either in probability or in expectation of the form $\max_{i \in \mathcal{I}} X_i$ or $\max_{i \in \mathcal{I}} |X_i|$ where $|\mathcal{I}| = \infty$ under the assumption $X_i \in SG(\cdot)$ or $SE(\cdot)$. One strategy is to approximate $\max_{i \in \mathcal{I}} X_i$ with finite covers of a ball where the maximum within the ball be bounded by that within the covers.

References

- [HKZ12] HSU, D. and KAKADE, S. M. and ZHANG, T. (2012) A tail inequality for quadratic forms of subgaussian random vectors, Electron. Commun. Prob., 17, No.52 pp. 1–6.
- [BLM13] BOUCHERON, S., LUGOSI, G., and MASSART, P. (2013) Concentration inequalities: A nonasymptotic theory of independence. Oxford university press.
 - [T95] TALAGRAND, M. (1995) Concentration of measure and isoperimetric inequalities in product spaces. Publications Mathématiques de l'Institut des Hautes Etudes Scientifiques, 81(1), 73-205.