
36-709: Advanced Statistical Theory Spring 2019

Lecture 8: February 21
Lecturer: Alessandro Rinaldo Scribes: Shenghao Wu

Note: LaTeX template courtesy of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

This lecture’s notes illustrate some uses of various LATEX macros. Take a look at this and imitate.

8.1 Euclidean norm of sub-Gaussian random vectors

Definition 8.1 (Sub-Gaussian random vectors)A random vector X ∈ Rd is a sub-Gaussian random
vector with parameter σ2 if

vTX ∈ SG(σ2),∀v ∈ Sd−1

where Sd−1 = {x ∈ Rd : ||x|| = 1} is the d− 1 unit sphere. We write X ∈ SGd(σ2).

Lemma 8.2 X ∈ Rd is a sub-Guassian random vector with parameter ||Σ||op if X ∼ N (0,Σ)

Proof: For any v ∈ Sd−1, vTΣv ≤ ||Σ||op. Take MGF: E[eλv
TX ] = eλ

2vTΣv/2 ≤ eλ2||Σ||op/2

Notice that sub-Guassian vector does not need to be a vector of independent Gaussians (but the vice is
true).

We now prove the theorem from last time:

Theorem 8.3 Let X ∈ SGd(σ2), ||X|| =
√∑d

i=1X
2
i , then:

E[||X||] ≤ 4σ
√
d

Moreover, with probability at least 1− δ for δ ∈ (0, 1):

||X|| ≤ 4σ
√
d+ 2σ

√
log(

1

δ
)

Proof: Let N 1
2

be a 1
2 -minimal cover of Bd in Euclidian norm, that is:

∀θ ∈ Bd,∃z = z(θ) ∈ N 1
2
s.t. ||θ − z|| ≤ 1

2

. Equivalently, ∀θ ∈ Bd, we can write θ = z+w where z = z(θ) ∈ N 1
2

and ||w|| ≤ 1
2 . Also, by the volumetric

rate bounds,

|N 1
2
| ≤ (1 +

2

1/2
)d = 5d
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Hence,

max
v∈Bd

vTX ≤ max
z∈N 1

2

zTX + max
w∈ 1

2Bd
wTX = max

z∈N 1
2

zTX +
1

2
max
w∈Bd

wTX

Hence max
v∈Bd

vTX︸ ︷︷ ︸
||X||

≤ 2 maxz∈N 1
2

zTX.

In general, some argument will lead to the following bound:

||X|| ≤ 1

1− ε
max
z∈N 1

2

zTX for ε ∈ (0, 1)

Therefore,

E[||X||] ≤ 2E[ max
z∈N 1

2

zTX︸︷︷︸
SG(σ2)

] ≤ 2σ
√

2log|N 1
2
| ≤ 2σ

√
2dlog5 ≤ 4σ

√
d

The second inequality is due to the maximal inequality for sub-Gaussian random variables we have proved
in class.

To prove the high probability bound, for t > 0:

P(||X|| ≥ t) ≤ P( max
z∈N 1

2

zTX ≥ t

2
) ≤ |N 1

2
|exp{− t2

8σ2
} ≤ 5dexp{− t2

8σ2
}

The desired bound is obtained by setting the right hand side equal to σ ∈ (0, 1) and solve for t

Note: we have already seen from HW1 that under some regularity condition [Y10]:

||Σ̂n − Σ||∞ ≤ C
√
t+ logδ

n

with probability at least 1− e−t, where Σ̂n is the empirical covariance matrix.

8.2 Matrix norm

Definition 8.4 (Operator Norm) Let A ∈ Rm×n, rank(A) = r ≤ min{m,n}. The singular value decom-
position (SVD) of A is A = UDV T where

1. D = diag(σ1, · · · , σr). σ1 ≥ · · · ≥ σr > 0 are the singular values of A.

2. U ∈ Rm×r whose columns are orthonormal and are called singular vectors

3. V ∈ Rn×r whose columns are orthonormal and are called singular vectors

Then AATuj = σ2
juj, A

TAvj = σ2
j vj where uj , vj are the j-th column of U and V respectively. The operator

norm of A is:

||A||op = max
i
σi = max

x∈Rn\{0}

||Ax||
||X||

= max
x∈Sn−1

y∈Sn−1

xTAy

Remarks:
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• When A ∈ Sn(symmetric), ||A||op = maxx∈Sn−1 |xTAx|.

• We sayA ∈ Sn+(positive semi-definite (PSD)) if and only if ∀x ∈ Rn, xTAx ≥ 0. As an example, any
covariance matrix Σ is PSD because V[aTx] = aT ≥ 0,∀a ∈ Rn

• If A ∈ Sn+, σi = λi where λi’s are the eigenvalues of A, ||A||op = maxi λi = maxx∈Sn−1 xTAx

The following two types of norms are also common in practice.

Definition 8.5 (Frobenius Norm)

||A||F =

√∑
i,j=1

A2
ij

Definition 8.6 (p-Schatten Norm)

||A||p = (

n∧m∑
i=1

σpi (A))1/p

where σi(A)’s are the singular values of A. When p = 1, ||A||p is the nuclear norm. When p =∞, ||A||p is
the spectral norm.

The following two inequality are often useful in practice:

Lemma 8.7
||Ax|| ≤ ||A||op||x|| ∀x

Lemma 8.8 (Weyl’s inequality) Assume A,B ∈ Rm have singular values σi(A), σj(B) for i = 1, · · · , n∧
m; j = 1, · · · , n ∧m, then:

max
i
|σi(A)− σi(B)| ≤ ||A−B||op

Corollary ||A−B||op → 0⇒ |xT (A−B)y| → 0 uniformly for every x ∈ Sm−1, y ∈ Sn−1.

8.3 Covariance matrix estimation in the operator norm

Theorem 8.9 Let X1, · · · , Xn be iid samples from a distribution with mean 0 and covariance matrix Σ.
Assume Xi ∈ SGd(σ2) and are centered. Let Σ̂n = 1

n

∑n
i=1XiX

T
i . Then there exists a universal constant

C > 0 s.t.

P(
||Σ̂n − Σ||op

σ2
≥ C max{

√
d+ log( 2

δ )

n
,
d+ log( 2

δ )

n
}) ≤ δ, δ ∈ (0, 1)

Remark: Theorem 8.9 indicates that Σ̂n
p−→ Σ with respect to the operator norm requires d

n → 0
Proof ideas: Use discretization and sub exponential concentration bound. Recall that X ∈ SG(σ2) ⇒
X2 − E[X2] ∈ SE(162σ4, 16σ2).

Lemma 8.10 Let A := Σ̂n − Σ ∈ Sn and Nε be the ε-net of Sd−1 for ε ∈ (0, 1
2 ), then:

||A||op = max
x∈Sn−1

|xTAx| ≤ 1

1− 2ε
max
y∈Nε

|yTAy|
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