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This lecture was dedicated to proving the Matrix Bernstein inequality in detail. The statement of Matrix
Hoeffding inequality was also stated. Before discussing these statements we first state some preliminaries.

14.1 Some preliminaries on matrix calculus

Following is a list of some standard facts about symmetric d × d matrices which will be used in the proof.
Wherever used, A = UΛUT is the singular value decomposition of A.

1. Element-wise matrix function can be shifted to function on eigenvalues: f(A) = Uf(Λ)UT .

2. PSD ordering: A � B iff B −A � 0.

3. Transfer rule: f, g : I ⊆ R → R s.t. f(x) ≤ g(x) ∀x ∈ I then f(A) � g(A) if the eigenvalues of A are
contained in I.

4. Matrix exponentiation function: exp(A) = I +
∞∑
k=1

Ak

k!
= Uexp(Λ)UT . Note that exp(A) is always

positive definite.

5. Matrix logarithm: The inverse function of exp on S++, the set of all positive definite matrices. Hence,
log(exp(A)) = A.

6. Trace: tr(A) =
d∑
i=1

Aii =
d∑
i=1

λi.

7. Trace-exponential inequality: A � B =⇒ tr(exp(A)) � tr(exp(B)).

8. Operator monotonicity for log: 0 ≺ A � B =⇒ log(A) � log(B).

9. If A,B have their eigenvalues in I ⊆ R and f : R → R is convex on I then f is operator convex if
f(τA+ (1− τ)B) � τf(A) + (1− τ)f(B) for all τ ∈ [0, 1].

10. Note that in general exp(A + B) 6= exp(A)exp(B) but tr(exp(A + B)) ≤ tr(exp(A)exp(B))). The
latter is called the Golden-Thompson inequality which is unfortunately generally not true for addition
of more than two matrices.

14-1



14-2 Lecture 14: February 28

14.2 Matrix Bernstein Inequality

Theorem 14.1 Let X1, . . . , Xn be independent centered d×d symmetric random matrices such that ||Xi||op ≤
C for all i a.s. and some C > 0. Then

P

[
||

n∑
i=1

Xi||op ≥ t

]
≤ 2dexp


−t2

2

(
σ2 +

tC

3

)


Proof: The proof is divided into 4 steps.

Step 1. In this step we will bound the mgf of S =
n∑
i=1

Xi. Note that letting λmax(A) = max
s
λs(A) we get

||A||op = max{λmax(A), λmax(−A)}

where λmax(−A) = −λmin(A). Thus we only need to bound λmax(A). A similar argument can be used for
λmax(−A) to finish the proof.

Fix λ ≥ 0 and t ∈ R. Then

P[λmax(S) ≥ t] ≤ e−λtE[eλ·λmax(S)]

= e−λtE[λmax(exp{λS})]
≤ e−λtE[tr(exp{λS})]

(14.1)

Step 2. Now,

E[tr(exp(λS))] = E

[
tr

(
exp

(
λ

n−1∑
i=1

Xi + λXn

))]
condition on X1, . . . , Xn−1 and apply the Corollary 14.3 to get

E[tr(exp(λS))] ≤ EX1,...,Xn−1

[
tr

(
exp

(
λ

n−1∑
i=1

Xi + logEXn
exp(λXn)

))]
successive application on Xn−1 to X1 gives us

E[tr(exp(λS))] ≤ tr

(
exp

(
n∑
i=1

logE[exp(λXi)]

))
Hence we have,

P[λmax(S) ≥ t] ≤ inf
λ>0

{
e−λttr

(
exp

(
n∑
i=1

logE[exp(λXi)]

))}
This is referred to as the master tail bound theorem for sums of random independent matrices.

Step 3. Now we will bound the terms E[exp(λXi)]. Assume C = 1 in the theorem of the statement. By
Lemma 14.5

E[exp(λX)] � exp{f(λ)E[X2]}
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where f(λ) = eλ − λ− 1. Then

P[λmax(S) ≥ t] ≤ d inf
λ>0

exp{−λt+ f(λ)σ2}

where σ2 = ||
n∑
i=1

E[X2
i ]||op

Step 4. Bernstein argument

The minimum is achieved at λ = log

(
1 +

t

σ2

)
. So that

P[λmax(S) ≥ t] ≤ dexp
{
− σ

2

C2
h

(
Ct

σ2

)}

≤ dexp


−t2

2

(
σ2 +

Ct

3

)


(14.2)

here h(µ) = (1 + µ) log(1 + µ)− µ for all µ > 0 and

h(µ) ≥ µ2

2(1 + µ/3)

14.3 Some useful theorems and lemmas

Theorem 14.2 (Lieb’s Theorem) Let B be a symmetric matrix. The function tr(exp(B + log(A))) defined
for positive definite matrices A is operator concave.

Corollary 14.3 If B is a fixed d× d symmetric matrix and X is a symmetric d× d random matrix then

E [tr(exp(B +X))] ≤ tr(exp(B + logE[exp(X)]))

Proof: Set Y = exp(X) ∈ S++. Use Jensen’s inequality to get

E[tr(exp(B + log(Y ))] ≤ tr(exp(B + logE[Y ]))

Lemma 14.4 Let g : (0,∞)→ [0,∞) and A1, . . . , An be d× d symmetric matrices s.t.

E[exp(λXi)] � exp{g(λ)Ai}

for all i and λ ≥ 0. Then,

P

[
λmax

(
k∑
i=1

Xi

)
≥ t

]
≤ d inf

λ>0
{exp {−λt+ g(λ)e}}
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where e = λmax

(
n∑
i=1

Ai

)
.

Proof: We will use the following two properties:

1. Operator monotonicity of log: if 0 ≺ A � B then log(A) � log(B).

2. Monotonicity of tr(exp(·)): if A � B then tr(exp(A)) � tr(exp(B))

By the master tail bound theorem we have

P[λmax(S) ≥ t] ≤ e−λttr

(
exp

(
n∑
i=1

logE[exp(λXi)]

))

We have

E[exp(λXi)] � exp{g(λ)Ai}
=⇒ log(E[exp(λXi)]) � log(exp{g(λ)Ai}) = g(λ)Ai

(14.3)

Hence,

n∑
i=1

log(E[exp(λXi)]) � g(λ)

n∑
i=1

Ai

By property 2,

P [λmax(S) ≥ t] ≤ e−λttr

(
exp

(
g

(
λ

n∑
i=1

Ai

)))
≤ de−λtexp {g(λ)e}

(14.4)

Lemma 14.5 Let X be a d× d symmetric mean 0 random matrix s.t. ||X||op ≤ 1 a.s.. Then

E[exp{λX}] � exp{(eλ − λ− 1)E[X2]}

for all λ > 0.

Proof: The function

f(x) =


eλx − λx− 1

x2
x 6= 0

λ2

2
x = 0
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is increasing on [0,∞] such that f(x) ≤ f(1) for x ∈ [0, 1]. Then

exp(λX) = I + λX +Xf(X)X � I + λX +X(f(1).I)X = I + λX + f(1)X2

because f(X) � f(1)I. Taking expectation on both the sides we get

E[exp(λX)] � I + E[f(1)X2]

� exp{f(1)E[X2]} = exp{(eλ − λ− 1)E[X2]}
(14.5)

where the last inequality follows from the fact that 1 + x ≤ ex.

14.4 Matrix Hoeffding Inequality

Theorem 14.6 (Matrix Hoeffding) Let X1, . . . , Xn be independent centered d × d symmetric random s.t.
X2
i � A2

i a.e., where Ai ∈ S++. Then for S =
∑
Xi

P[λmax(S) ≥ t] ≤ dexp
{
−t2

8σ2

}
where σ2 = ||

∑
A2
i ||op


