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In this lecture we continue analyzing the class of Sub-Exponential random variables, derive properties of the
tail behavior for this class. We introduce Orlicz norms as a more generic way of dealing with defined before
classes of random variables.

5.1 Sub-Exponential Random variables

One can treat class of Sub-Exponential random variables as an extention of the class of Sub-Gaussian random
variables.

Definition 5.1 (Sub-Exponential random variable) Centered random variable X ∈ SE(ν2, α) with pa-
rameters ν, α > 0 if:

EeλX ≤ eλ
2ν2

2 , ∀λ : |λ| < 1

α

Observe that the moments of X are still well defined since they can be found as the derivative of the MGF
(moment generating function) at zero. Additionally, one can say informally that class of Sub-Gaussian
random variable can be viewed as the class of Sub-Exponential random variables when alpha goes to zero.

Example: If Z ∈ N (0, 1), then Z2 ∈ SE(4, 4).

5.1.1 Tail behavior for Sub-Exponential Random Variables

Theorem 5.2 (Tail bound for Sub-Exponential Random Variables) Let X ∈ SE(ν2, α). Then:

P(|X − µ| ≥ t) ≤

{
2e−t

2/(2ν2), 0 < t ≤ ν2

α (Sub-Gaussian behavior)

2e−t/2α, t > ν2

α

It can be equivalently stated as:

P(|X − µ| ≥ t) ≤ e−
1
2 min{ t2

ν2
, tα}

Proof:

Assume µ = 0. Then repeating Chernoff argument, one obtains:

P(X ≥ t) ≤ e−λt+λ2ν2

2 = eg(λ,t), ∀λ ∈ (0,
1

α
)
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To obtain the tightest bound one needs to find:

g∗(t) = inf
λ∈(0, 1α )

g(λ, t)

To do so, notice, firstly, that unconstrained minimum occurs at λ∗ = t/ν2 > 0. Consider two cases:

1. If λ∗ < 1/α⇔ t ≤ ν2

α , then unconstrained minimum appears to be also constrained minimum and by
plugging in this value one obtains the bound describing sub-Gaussian behavior.

2. If λ∗ > 1/α ⇔ t > ν2/α, then notice that the function g(λ, t) is decreasing in λ in the interval
λ ∈ (0, 1

α ). Thus, the constrained minimum occurs at the boundary:

λ∗constrained =
1

α

and

g(λ∗constrained, t) = − t
α

+
1

2α

ν2

α
≤ − t

2α

since ν2

α ≤ t.

Recall that sufficient conditions for a random variable to be a Sub-Gaussian include:

• Boundedness of a random variable.

• Condition on the moments
(
E|X|k

)1/k
One would like to obtain a similar condition allowing unbounded random variables to behave sub-exponentially.
One such condition is called Bernstein condition.

Definition 5.3 (Bernstein condition) Let X be a random variable with mean µ and variance σ2. Assume
that ∃b > 0:

E|X − µ|k ≤ 1

2
k!σ2bk−2, k = 3, 4, . . .

Then one says that X satisfies Bernstein condition.

Lemma 5.4 If random variable X satisfies Bernstein condition with parameter b, then:

Eeλ(X−µ) ≤ e
λ2σ2

2
1

1−b|λ| , ∀|λ| < 1

b

Additionally, from the bound on the moment generating function one can obtain the following tail bound
(also known as Bernstein inequality):

P (|X − µ| ≥ t) ≤ 2 exp

(
− t2

2(σ2 + bt)

)
,∀t > 0

Proof: Pick λ : |λ| < 1
b (allowing interchanging summation and taking expectation) and expand the MGF

in a Taylor series:

Eeλ(X−µ) = 1 +
λ2σ2

2
+

∞∑
k=3

E|X − µ|k

k!
λk ≤ 1 +

λ2σ2

2
+
λ2σ2

2

∞∑
k=3

(|λ|b)k−2 =
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= 1 +
λ2σ2

2

1

1− b|λ|
≤ e

λ2σ2

2
1

1−b|λ|

where we used 1 + x ≤ ex. To show the final bound, take λ : |λ| < 1
2b . Then the bound becomes:

e
λ2σ2

2
1

1−b|λ| ≤ eλ
2σ2

= e
λ2(2σ2)

2

implying that X ∈ SE(2σ2, 2b). The concentration result then follow by taking λ = t
bt+σ2 .

5.1.2 Composition property of Sub-Exponential random variables

Let X1, . . . , Xn be independent random variables such that EXi = µi and Xi ∈ SE(ν2i , αi). Then

n∑
i=1

(Xi − µi) ∈ SE

(
n∑
i=1

νi
2,max

i
αi

)

In particular, denote ν2∗ =
∑n
i=1 νi

2, α∗ = max
i
αi. Then:

P

(
1

n

∣∣∣ n∑
i=1

(Xi − µi)
∣∣∣ ≥ t) ≤

2 exp
(
− nt2

2
∑n
i=1 ν

2
i

)
, 0 < nt ≤ ν2

∗
α∗

2 exp
(
− nt

2α∗

)
, otherwise

or, equivalently,

P

(
1

n

∣∣∣ n∑
i=1

(Xi − µi)
∣∣∣ ≥ t) ≤ exp

(
−n

2
min{ t

2

ν2∗
,
t

α∗
}
)

Remark: Notice that that the range over which one obtains sub-Gaussian tail behavior gets smaller.

Example: Let X ∼ χ2
n, i.e. X =

∑n
i=1 Z

2
i where Zi ∼ N (0, 1). Then X ∈ SE(4n, 4) and thus,

P

(∣∣∣ 1
n

n∑
i=1

Z2
i − 1

∣∣∣ ≥ t) ≤ {2 exp
(
−nt

2

8

)
, t ∈ (0, 1)

2 exp
(
−nt8

)
, t ≥ 1

5.2 Orlicz norms

Everything said so far can be handled in more general way using Orlicz norms.

Definition 5.5 (ψ-Orlicz norm) Let function ψ : R+ → R+ satisfy the following properties:

• ψ(x) is strictly increasing function

• ψ(x) is a convex function

• ψ(0) = 0

Then the ψ-Orlicz norm of a random variable X is defined as:

‖X‖ψ = inf{t > 0 : Eψ
(
|X|
t

)
≤ 1}
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Let us look at several examples:

1. Let ψ(x) = xp, p ≥ 1. Then:

‖X‖ψ = ‖X‖p = (E|X|p)
1
p

2. Let ψp(x) = ex
p − 1, p ≥ 1. The corresponding Orlicz has the following properties:

(a) p = 1: then ‖X‖ψ1 < ∞ is equivalent to X belonging to the class of Sub-Exponential random
variables

(b) p = 2: then ‖X‖ψ2 < ∞ is equivalent to X belonging to the class of Sub-Gaussian random
variables

It is easy to show that:
‖X2‖ψ1

= (‖X‖ψ2
)2, ‖XY ‖ψ1

≤ ‖X‖ψ2
‖Y ‖ψ2

Using Orlicz norms allows to straightforwardly implies the following facts:

1. squared Sub-Gaussian random variable is Sub-Exponential.

2. product of two Sub-Gaussian random variables is Sub-Exponential.

Lemma 5.6 (Concentraiton of a sub-gaussian random vector) Let X = (X1, . . . , Xd)
> ∈ Rd be such

that: EXi = 0,V(Xi) = 1 and assume that Xi ∈ SG(σ2). Then we can show that ‖X‖2 concentrates around√
d.

Proof: Consider:

‖X‖22 =

n∑
i=1

X2
i

Then X2
i − 1 ∈ SE(ν2, α) where both parameters are determined by σ2. Thus,

P
(∣∣∣‖X‖2

d
− 1
∣∣∣ ≥ t) ≤ 2 exp

(
−d

2
min{ t

2

ν2
,
t

α
}
)
, ∀t > 0

We will need to use the following fact: fix c > 0. Then for any numbers z > 0:

|z − 1| ≥ c implies=⇒ z2 − 1 ≥ max{c, c2}

Using this fact allows to conclude that:

P
(∣∣∣‖X‖√

d
− 1
∣∣∣ ≥ u) = P

(∣∣∣‖X‖2
d
− 1
∣∣∣ ≥ max{u, u2}

)
≤ 2 exp

(
−du

2

2C

)

5.3 Hoeffding vs. Bernstein

One would like to compare two type of bounds/inequalities: Hoeffding’s and Bernstein’s. Denote µ = EX
andσ2 = V(X). Assume that |X − µ| ≤ b a.e. Then:

P(|X − µ| ≥ t) ≤

2 exp
(
− t2

2b2

)
, Hoeffding

2 exp
(
− t2

2(σ2+bt)

)
, Bernstein
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For small t (meaning bt� σ2) Bernstein’s inequality gives rise to a bound of the order:

P(|X − µ| ≥ t) ≤ 2e−
t2

cσ2

while Hoeffding’s gives:

P(|X − µ| ≥ t) ≤ 2e−
t2

cb2

But σ2 ≤ b2 and, thus, Bernstein’s bound is better / tighter.

Theorem 5.7 (Classic Bernstein inequality) Let X1, . . . , Xn be independent random variables such that
|Xi − EXi| ≤ b a.e. and max

i
V(Xi) ≤ σ2. Then:

P

(∣∣∣ 1
n

n∑
i=1

(Xi − EXi)
∣∣∣ ≥ t) ≤ 2 exp

(
− nt2

2(σ2 + bt
3 )

)

Theorem 5.8 (Laurent-Massart bounds for χ2) Let Z1, . . . , Zd ∼ N (0, 1) and a = (a1, . . . , ad) with
ai ≥ 0,∀i ∈ {1, . . . , n}. Let X =

∑n
i=1 ai(X

2
i − 1). Then for right-tail behavior is described by:

P(X ≥ 2‖a‖
√
t+ 2‖a‖∞t) ≤ e−t, ∀t > 0

and for left-tail behavior:
P(X ≤ −2‖a‖

√
t) ≤ e−t, ∀t > 0


