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1.1 Recap of Parametric Statistical Models

Definition 1.1

P = {Pθ : θ ∈ Θ} (1.1)

where Θ ⊆ Rd and Pθ is a probability distribution on Rs.

1.1.1 Example: Normal

Θ = {(µ,Σ) : µ ∈ Rk,Σ ∈ Sk+} where Sk+ is the cone of PD k × k matrices.

(Recall that a matrix M is PD ⇐⇒ xTMx > 0 for all x ∈ Rk 6= 0)

Then Pθ ∼ N (µ,Σ) and dim(Θ) = k + k(k+1)
2 = k2

2 + 3
2k.

1.1.2 Example: Linear Regression

Y ∼ N (Xβ, σ2In) where Y ∈ Rn, X ∈ Rn×d, β ∈ Rd×1, and σ > 0.

Model: Y = Xβ + ε where ε = (ε1, ..., εn) i.i.d. from N (0, σ2).

Observe
˜
X = (x1, ..., xn) i.i.d. from Pθ0

Goal: Draw inference on θ0.

Important Assumption: P , θ0 are fixed as n → ∞. In high dimensional statistics we assume d → ∞ as
n→∞. In non-parametric statistics we assume P grows as n→∞.

1.1.3 Master Theorem for Parametric Models (from Jon Wellner’s Notes)

Found at

http://www.stat.cmu.edu/~arinaldo/Teaching/36709/S19/Wellner_Notes.pdf

There is a mistake in the notes, find it for extra credit on HW1!
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1.1.3.1 Assumptions

Let

1. pθ be the density for the distribution Pθ

2. Ln(θ|
˜
Xn) = Πpθ(xi) be the likelihood function, `n(θ|

˜
Xn) = logLn(θ|

˜
Xn) =

∑
log pθ(xi)

3. ∇θ`n(θ) be the gradient of `n(θ), H`n(θ) be the Hessian of `n(θ)

4. I(θ) = −Ex[H`n(θ|x)] be the Fisher Information

Then under certain regularity conditions (smoothness, identifiability, ...) on P , let Θ̃n be a solution to the
score equation ∇`n(θ) = 0 (i.e., the MLE).

We have that:

• Θ̃n exists and Θ̃n
p−→ Θ0 (WLLN)

•
√
n(Θ̃n −Θ0)

d−→ Nd(0, I−1(Θ0)) (CLT)

• 2 log λ̃n
d−→ χ2

d where λ̃n =
`n(Θ̃n|

˜
Xn)

`n(Θ0|
˜
Xn) (Wilk’s Theorem)

•
√
n(Θ̃n −Θ0)T În(Θ̃n)

√
n(Θ̃n −Θ0)

d−→ χ2
d (Wald Test)

Some points of note:

• These results are asymptotic!

• Critical: Require P and number of parameters to be fixed as n→∞

1.2 High-Dimensional Statistical Models

Definition 1.2 A high-dimensional parametric statistical model is a sequence of parametric statistical models
{Pn}∞n=1 where for each n, the sample space has size Sn and the parameter space has dimension dn, where
Sn, dn are allowed to grow with n.

1.2.1 Example: Linear Regression

(Y1, X1), ..., (Yn, Xn) are n R.V.s in R × Rdn such that Yi = XT
i β + εi where (ε1, ..., εn) ∼ N (0, σ2In) and

β ∈ Rdn .

1.3 Different Types of Parametric Models

1. Fixed-d models (what we’ve worked with before)
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2. High-dimensional models

(1a) dn is allowed to change but dn ∈ o(n)

(xn ∈ o(yn) ⇐⇒ ∀ε > 0. ∃n0 s.t. ∀n > n0. |xn

yn
| < ε [i.e., |xn

yn
| → 0])

See work by Portnoy on these models

(1b) dn � n

Not generally possible without additional structural assumptions (sparsity, data near a low-
dimensional manifold, etc.)

Recommended Reading / Class Sources

[] M.J. Wainwright, “High-Dimensional Statistics: A Non-Asymptotic Viewpoint,” Cambridge
Series in Statistical and Probabilistic Mathematics, 2019.

Note: This text has yet to be published! The author has generously provided Prof.
Rinaldo with advance copies of some chapters, so do not distribute this material
outside of the class

[] R. Vershynin, “High-Dimensional Probability: An Introduction with Applications in Data
Science,” Cambridge Series in Statistical and Probabilistic Mathematics, 2018.


