36-709: Advanced Statistical Theory I

Lecture 1: January 15

Lecturer: Alessandro Rinaldo

 $Scribe: \ Elan \ Rosenfeld$

Spring 2019

Note: LaTeX template courtesy of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

1.1 Recap of Parametric Statistical Models

Definition 1.1

$$P = \{P_{\theta} : \theta \in \Theta\} \tag{1.1}$$

where $\Theta \subseteq \mathbb{R}^d$ and P_{θ} is a probability distribution on \mathbb{R}^s .

1.1.1 Example: Normal

 $\Theta = \{(\mu, \Sigma) : \mu \in \mathbb{R}^k, \Sigma \in S^k_+\} \text{ where } S^k_+ \text{ is the cone of PD } k \times k \text{ matrices.}$ (Recall that a matrix M is PD $\iff x^T M x > 0$ for all $x \in R^k \neq 0$) Then $P_\theta \sim \mathcal{N}(\mu, \Sigma)$ and $dim(\Theta) = k + \frac{k(k+1)}{2} = \frac{k^2}{2} + \frac{3}{2}k$.

1.1.2 Example: Linear Regression

 $Y \sim \mathcal{N}(X\beta, \sigma^2 I_n)$ where $Y \in \mathbb{R}^n$, $X \in \mathbb{R}^{n \times d}$, $\beta \in \mathbb{R}^{d \times 1}$, and $\sigma > 0$.

Model: $Y = X\beta + \epsilon$ where $\epsilon = (\epsilon_1, ..., \epsilon_n)$ i.i.d. from $\mathcal{N}(0, \sigma^2)$.

Observe $X = (x_1, ..., x_n)$ i.i.d. from P_{θ_0}

Goal: Draw inference on θ_0 .

Important Assumption: P, θ_0 are fixed as $n \to \infty$. In high dimensional statistics we assume $d \to \infty$ as $n \to \infty$. In non-parametric statistics we assume P grows as $n \to \infty$.

1.1.3 Master Theorem for Parametric Models (from Jon Wellner's Notes)

Found at

http://www.stat.cmu.edu/~arinaldo/Teaching/36709/S19/Wellner_Notes.pdf

There is a mistake in the notes, find it for extra credit on HW1!

1.1.3.1 Assumptions

Let

- 1. p_{θ} be the density for the distribution P_{θ}
- 2. $L_n(\theta|\tilde{X}_n) = \prod p_{\theta}(x_i)$ be the likelihood function, $\ell_n(\theta|\tilde{X}_n) = \log L_n(\theta|\tilde{X}_n) = \sum \log p_{\theta}(x_i)$
- 3. $\nabla_{\theta} \ell_n(\theta)$ be the gradient of $\ell_n(\theta)$, $H \ell_n(\theta)$ be the Hessian of $\ell_n(\theta)$
- 4. $I(\theta) = -\mathbb{E}_x[H\ell_n(\theta|x)]$ be the Fisher Information

Then under certain regularity conditions (smoothness, identifiability, ...) on P, let Θ_n be a solution to the score equation $\nabla \ell_n(\theta) = 0$ (i.e., the MLE).

We have that:

- $\widetilde{\Theta}_n$ exists and $\widetilde{\Theta}_n \xrightarrow{p} \Theta_0$ (WLLN)
- $\sqrt{n}(\widetilde{\Theta}_n \Theta_0) \xrightarrow{d} \mathcal{N}_d(0, I^{-1}(\Theta_0))$ (CLT)
- $2\log \widetilde{\lambda}_n \xrightarrow{d} \chi_d^2$ where $\widetilde{\lambda}_n = \frac{\ell_n(\widetilde{\Theta}_n|X_n)}{\ell_n(\Theta_0|X_n)}$ (Wilk's Theorem)
- $\sqrt{n}(\widetilde{\Theta}_n \Theta_0)^T \widehat{I}_n(\widetilde{\Theta}_n) \sqrt{n}(\widetilde{\Theta}_n \Theta_0) \xrightarrow{d} \chi_d^2$ (Wald Test)

Some points of note:

- These results are asymptotic!
- Critical: Require P and number of parameters to be fixed as $n \to \infty$

1.2 High-Dimensional Statistical Models

Definition 1.2 A high-dimensional parametric statistical model is a sequence of parametric statistical models $\{P_n\}_{n=1}^{\infty}$ where for each n, the sample space has size S_n and the parameter space has dimension d_n , where S_n , d_n are allowed to grow with n.

1.2.1 Example: Linear Regression

 $(Y_1, X_1), ..., (Y_n, X_n)$ are n R.V.s in $\mathbb{R} \times \mathbb{R}^{d_n}$ such that $Y_i = X_i^T \beta + \epsilon_i$ where $(\epsilon_1, ..., \epsilon_n) \sim \mathcal{N}(0, \sigma^2 I_n)$ and $\beta \in \mathbb{R}^{d_n}$.

1.3 Different Types of Parametric Models

1. Fixed-d models (what we've worked with before)

2. High-dimensional models

(1a) d_n is allowed to change but $d_n \in o(n)$

 $(x_n \in o(y_n) \iff \forall \epsilon > 0. \ \exists n_0 \text{ s.t. } \forall n > n_0. \ |\frac{x_n}{y_n}| < \epsilon \text{ [i.e., } |\frac{x_n}{y_n}| \to 0])$

See work by Portnoy on these models

(1b) $d_n \gg n$

Not generally possible without additional structural assumptions (sparsity, data near a low-dimensional manifold, etc.)

Recommended Reading / Class Sources

[] M.J. WAINWRIGHT, "High-Dimensional Statistics: A Non-Asymptotic Viewpoint," Cambridge Series in Statistical and Probabilistic Mathematics, 2019.

Note: This text has yet to be published! The author has generously provided Prof. Rinaldo with advance copies of some chapters, so *do not* distribute this material outside of the class

[] R. VERSHYNIN, "High-Dimensional Probability: An Introduction with Applications in Data Science," *Cambridge Series in Statistical and Probabilistic Mathematics*, 2018.