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In the last lecture, we started discussing high dimensional statistics. In this lecture we look at how the
statistical models change as the dimension of the problem grows.

2.1 Examples of high dimensional statistical models

2.1.1 Covariance Estimation

In the problem setting we obtain vector samples X1, X2, · · ·Xn
iid∼ (0,Σ) in Rd where Σ is a d × d matrix.

We want to estimate Σ using the empirical covariance matrix, given by Σ̂n = 1
n

∑n
i=1XiX

T
i . Note that the

empirical covariance matrix is an unbiased estimator of the covariance matrix, ie E[Σ̂n] = Σ.

We are interested in finding ‖Σ̂n − Σ‖∞, to quantify the goodness of the estimator. If this is fairly small,
we could possibly say we have a good estimator. But we can’t be sure if the estimate is Positive definite or
not. How do we measure this?

Note: For d× d matrix A, ‖A‖∞ = maxi,j |Ai,j |

There are two cases that we need to consider. Case 1, wherein d is fixed and Case 2 wherein the dimension
of the problem d grows with n.

2.1.1.1 Fixed d

For a given pair (i, j) in 〈1, · · · , d〉, let Σ̂n(i,j) = 1
n

∑n
k=1 Z

(i,j)
k where Z

(i,j)
k = Xk,iXk,j . This implies that

every entry is an average of product of two things. In particular, Z
(i,j)
1 , · · · , Z(i,j)

n are iid with E[Σ̂n(i,j)]→
Σ(i,j). By WLLN (weak law of large numbers),

Σ̂n(i,j)
P−→ Σ(i,j) ∀(i, j)

Following this, we see that

‖Σ̂n − Σ‖∞ ≤
∑
i,j

|Σ̂n(i,j) − Σ(i,j)| (2.1)

Since |Σ̂n(i,j) − Σ(i,j)|
P−→ 0 ∀(i, j), each term can be expressed as op(1).

Aside: Last time, we defined o(n). In particular, if xn = o(1), this is equivalent to saying that, xn → 0 as
n→∞. Here, xn represents a deterministic sequence. What if we had random sequences?
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If {Xn}n=1,2,··· is a sequence of random vectors and {yn}n=1,2,··· is a sequence of positive numbers, then

Xn = op(1) ⇐⇒ Xn
P−→ 0.

This tells us that Eq. (2.1) can be expressed as

‖Σ̂n − Σ‖∞ ≤
∑
i,j

op(1) =
d(d+ 1)

2
op(1) (2.2)

If d is fixed as n goes to infinity, ‖Σ̂n − Σ‖∞ ≤ op(1) since the rest can be written of as a constant.

Furthermore, if Z
(i,j)
k has a second moment(that is entries of the random vector have a fourth moment)

then, by CLT

‖Σ̂n − Σ‖∞ +Op
( 1√

n

)
(2.3)

This provides a rate of convergence for the estimator chosen.

Aside: The Big-O notation may be familiar, and is defined for deterministic sequences, say {xn}, {yn}. If

xn = O(yn), ∃ c > 0 and n0 = n0(c) such that ∀ n > n0,
|xn|
|yn| < c. Similarly, for a sequence of random

vectors {Xn} and a sequence of positive numbers yn where Xn = Op(yn), ∀ ε > 0, ∃c = c(ε) such that

∀ n > n0 : P
(‖xn‖

yn
> c
)
< ε. This implies that the sequence of random vectors is bounded in probability.

Continuing with our covariance estimation problem, let X1, · · · , Xn
iid∼ (µ, σ2). Then

Xn =
1

n

n∑
i=1

Xi
P−→ µ (2.4)

Xn = µ+ op(1) (2.5)

By central limit theorem,

√
n

σ
(Xn − µ)

D−→ N (0, 1) (2.6)

Xn = µ+Op(
1√
n

). (2.7)

We are ignoring σ here because it is a constant. The statement obtained through CLT implies the first
statement and also gives us a rate.

2.1.1.2 d increases with n

If d is a function of n, we need different tools/language. In HW1 you’ll show that with probability at least
1− 1

n ,

‖Σ̂n − Σ‖∞ ≤ C
( log dn + log n

n

) 1
2

‖Σ̂n − Σ‖∞ = Op
( log dn

n

) 1
2

The increased rate of convergence shows the price you pay for the growing dimension. This may be a
misleading result because it seems to imply you can do well for d >> n but you should recall that the metric
under study isn’t a good one to begin with.
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2.2 High Dimensional Probability Distributions

Commonly known probability distributions do not look similar in a high dimensional space, imagining how
they behave isn’t necessarily intuitive. However, the good part is that they tend to concentrate [keithball].

For example, consider the Euclidean unit ball. Take r > 0, and ‖x‖ =
√∑

i x
2
i is the Euclidean norm, then

the Euclidean ball is given by
Bd(0, r) = {x ∈ Rd : ‖x‖ ≤ r}.

The infinity norm is defined as ‖x‖∞ = maxi |xi|. Let the cube be defined as

Cd(0, r) = {x ∈ Rd : ‖x‖∞ ≤ r}

In two dimensions the Euclidean unit ball, B − 2(0, 1) is a circle with radius 1 and the unit cube C2(0, 1) is
a square symmetric about the origin with each side = 2.

Let’s look at the volume of the sets considered above. Volume of the Euclidean norm ball Bd(0, r) = rdvd,
where vd = Vol(Bd(0, 1)).

vd =
π

d
2

Γ(d/2 + 1)

larged∼
(2πe

d

) d
2

.

The gamma function is given by Γ(x) =
∫∞
0

exp(−z)zx−1dz. Note that the volume of the Euclidean unit

ball goes to zero really fast in high dimensions. Although, this doesn’t hold for Cd(0, 1) which is equal to 2d

even in higher dimensions.

Assume X is uniformly distributed over Bd(0, 1), E[‖x‖] = d
d+1 . Now, pick ε ∈ (0, 1)

P (1− ε ≤ ‖x‖) =
vd − (1− ε)dvd

vd
= 1− (1− ε)d ≥ 1− exp(−εd).

The probability that ‖x‖ is close to 1 goes to 1 exponentially fast in d. Similarly, for the normal distribution,
if X ∼ Nd(0, Id), then with high probability ‖x‖ ∼

√
d. This implies that if you distribute points according

to the normal distribution, the whole space never gets filled in.

Let’s go back to the unit cube, Cd(0, 1) = {x ∈ Rd : ‖x‖∞ ≤ 1}. It turns out that

lim
d→∞

P
(√d

3
(1− ε) ≤ ‖X‖ ≤

√
d

3
(1 + ε)

)
= 1 ∀ ε ∈ (0, 1).

Ref [mledoux] for more detailed explanations and discussions. The main idea is that if X1, · · · , Xn are
independent random variables and f : Rn → R such that it doesn’t depend too much on any of its coordinates,
then f(X1, · · · , Xn) is very close to E[f(X1, · · · , Xn)].

2.2.1 Basic tail concentration bounds

Let X1, · · · , Xn
iid∼ (µ, σ2). By central limit theorem, Xn = 1

n

∑
iXi = µ+Op( 1√

n
). Note that this is a purely

asymptotic statement and doesn’t tell us about the behaviour for intermediate values of n, say n = 30. We
would like to know

P(|Xn − µ| ≥ t) for some t > 0

We know that

lim
n→∞

P
(√n
σ

(Xn − µ) > t
)

= P(z ≥ t)
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where Z ∼ N (0, 1). Let φ(t) = P(Z ≤ t), then we have(1

t
− 1

t3

)
φ(t) ≤ 1− φ(t) ≤ 1

t
φ(t) ≤ 1

2
exp(

−t2

2
)

Following this, we may be tempted to conclude that

P(|Xn − µ| ≥ t)
<∼ exp

(−nt2
2θ2

)
Although this is good for intuition, this isn’t exactly correct. We now look at the finite version of CLT, also
known as Berry Esseen Bound

Berry Esseen Bound : Let X1, · · · , Xn
iid∼ (µ, σ2) then

sup
x∈R

∣∣∣P(∑i(Xi − µ)√
nσ

≤ x
)
− P(Z ≤ x)

∣∣∣ ≤ C γ
n

; γ =
E[|Xi − µ|3]

σ3
, C ≤ 1

2

Note that you need three moments for this bound.


