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3.1 Basic concentration inequalities

3.1.1 Motivation

We know that Gaussian random variables concentrate around their mean, i. e. for X1, . . . , Xn ∼ N (µ, σ2),
it holds

P
(∣∣X̄n − µ

∣∣ ≥ t) ≤ exp

(
−nt2

2σ2

)
for every t ≥ 0. Thus, the probability that the sample average X̄n is far away from the mean µ decays
rapidly. We want to replicate this type of behavior for other random variables in a manner that allows
us to (1) obtain finite samples guarantees (i. e. for every n), and (2) circumvent the need for too many
distributional assumptions on X1, . . . , Xn.

Goal: Given some X ∼ P with mean µ, we want to derive an upper bound on P (|X − µ| ≥ t) which holds
for all t ≥ 0.

3.1.2 Markov inequality

We make a first attempt at bounding the above probability in terms of moments of X based on Markov’s
inequality.

Theorem 3.1 (Markov inequality) Let X be a random variable and E[X] = µ. Then,

P (|X − µ| ≥ t) ≤ min
q∈N

E[|X − µ|q]
tq

.

This procedure often yields an analytically sharp bound. However, it requires us to compute the centered
moments of X which is often infeasible or computationally expensive.

3.1.3 Chernoff bound

For a second approach to bounding of the above probability, we draw on the moment generating function of
the centered version of X, i. e. ψX(λ) := log(E[eλ(X−µ)]), which is well-defined for all λ ∈ (−b, b) for some
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0 ≤ b ≤ ∞. Assuming a 0 < λ ≤ b, we get with Markov’s inequality that

P (X − µ ≥ t) = P
(
eX−µ ≥ et

)
= P

(
eλ(X−µ) ≥ eλt

)
≤

E
[
eλ(X−µ)

]
eλt

= exp (ψX(λ)− λt) ,

which results in the following bound.

Theorem 3.2 (Chernoff bound) Let X be a random variable and E[X] = µ. Then,

P (X − µ ≥ t) ≤ exp (−ψ∗X(t)) ,

where ψ∗X(t) := supλ∈(0,b)(λt− ψX(λ)).

In some sense, deriving a Chernoff bound does not require less knowledge about a distribution than a
Markov-based bound since we need the moment generating function of X−µ. In fact, we have to assume the
existence of infinity many moments. A main advantage is that these moments do not have to be painstakingly
calculated, and in turn, Chernoff bounds are usually the way to go when having enough knowledge about
the distribution although they are not as sharp as the Markov-based bounds.

Example 3.3 (Chernoff bound for Gaussian) Let X ∼ N (µ, σ2), then E
[
eλX

]
= eµλ+σ

2λ2/2 for all
λ ∈ R. So, we have

sup
λ>0

(
λt− log

(
E
[
eλ(X−µ)

]))
= sup

λ>0

(
λt− λ2σ2

2

)
=

t2

2σ2
,

which yields the bound

P (X − µ ≥ t) ≤ e
−t2

2σ2

for all t > 0.

Theorem 3.4 (Two-sided Chernoff bound) Let X be a random variable and E[X] = µ. Then,

P (|X − µ| ≥ t) ≤ 2 exp (−ψ∗X(t)) ,

where ψ∗X(t) := supλ∈(−b,b)(λt− ψX(λ)).

3.1.4 Sub-Gaussian random variables

In order to be able to derive Chernoff bounds, we need (a bound for) ψX(λ) which is not always easily
attainable. A sufficient condition in this setting is that the random variable is sub-Gaussian, i. e. its tails
decay faster than the tails of some Gaussian. An extensive overview over sub-Gaussian random variables
can be found in [BK00].

Definition 3.5 (Sub-Gaussian) A random variable X is sub-Gaussian with parameter σ if

E
[
eλ(X−E[X])

]
≤ exp

(
λ2σ2

2

)
for all λ ∈ R. In that case, we write X ∈ SG(σ2).
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A first simple observation is given by X ∈ SG(σ2) iff −X ∈ SG(σ2).

Now, if X ∈ SG(σ2), then the mgf of X can be bounded by the Gaussian mgf which yields the same Chernoff
bound as in Example 3.3, i. e.

P (|X − µ| ≥ t) ≤ 2 exp

(
−t2

2σ2

)
.

Proposition 3.6 We observe several properties of sub-Gaussian random variables.

(1) Let X ∈ SG(σ2), then V[X] ≤ σ2 with V[X] = σ2 if X is Gaussian.

(2) If there are a, b ∈ R such that a ≤ X − µ ≤ b almost everywhere, then X ∈ SG
((

b−a
2

)2)
.

(3) Let X ∈ SG(σ2) and Y ∈ SG(τ2), then

(i) Xα ∈ SG(σ2α2) for all α ∈ R with α 6= 0,

(ii) X + Y ∈ SG((τ + σ)2), and

(iii) if X ⊥ Y , X + Y ∈ SG(τ2 + σ2).

Proof: (1) It holds by assumption that E
[
eλ(X−E[X])

]
≤ exp

(
λ2σ2

2

)
for all λ ∈ R, and hence,

1 + λE[X − µ]︸ ︷︷ ︸
=0

+λ2
E[(X − µ)2]

2
+ o(λ2) ≤ 1 +

λ2σ2

2
+ o(λ2).

We divide both sides of this inequality by λ2 (and assume λ 6= 0), and let λ→ 0.

(2) WLOG, let µ = 0. We show that log
(
E
[
eλX

])
≤ (b−a)2λ2

8 for all λ ∈ R. First, notice that V[X] ≤(
b−a
2

)2
. For any λ ∈ R, let Xλ be a RV with distribution that has density of the form

x 7→ eλXe−ψX(λ)fX(x)

if a ≤ x ≤ b. Then, V[Xλ] = ψ′′X(λ) ≤
(
b−a
2

)2
. Since ψλ(0) = ψ′λ(0) = 0, we have with the fundamental

theorem of calculus that

ψX(λ) =

∫ λ

0

ψ′X(u)du =

∫ λ

0

∫ µ

0

ψ′′X(w)dw ≤
∫ λ

0

∫ µ

0

λ2
(b− a)2

4
dwdu = λ

(b− a)2

8
.

(3) We prove (ii) and (iii) and assume that E[X] = E[Y ]. If X ⊥ Y , the proof is immediate. If not, it holds
for every λ ∈ R that E

[
eλ(X+Y )

]
= E

[
eλXeλY

]
. We use Hölder’s inequality (see below) and obtain

E
[
eλ(X+Y )

]
= E

[
eλXeλY

]
≤
(
E
[
eλpX

])1/p (E [eλqY ])1/q SG
≤ exp

(
λ2p2σ2

2

1

p
+
λ2q2τ2

2

1

q

)
= exp

(
λ2

2

(
pσ2 + qτ2

))
= exp

(
λ2

2
(σ + τ)2

)
,

where we set p = τ/σ + 1 in the last step.
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Detour:
If p, q > 0 with 1

p + 1
q = 1, it holds that

E [|X1X2|] ≤ (E [|X1|p])
1/p

(E [|X2|q])
1/q

which is called Hölder inequality. The special case with p = q = 2 is referred to as Cauchy-
Schwartz inequality. The Cauchy-Schwartz inequality can, for example, be used to show that∣∣∣∣∣ Cov[X1, X2]√

V[X1]
√
V[X2]

∣∣∣∣∣ ≤ 1.

Remark 3.7 Let X1, . . . , Xm be centered SG(σ2) random variables. Then we see with a union bound that

P
(

max
i
|Xi| ≥ t

)
= P (∪mi=1 {|Xi| ≥ t}) ≤

m∑
i=1

P (|Xi| ≥ t) ≤ me−t
2/(2σ2) = exp

(
−t2

2σ2
+ log(m)

)
.

3.1.5 Hoeffding inequality

Theorem 3.8 (Hoeffding inequality) Let X1, . . . , Xn be independent random variables such that Xi ∈
SG(σ2

i ) for all i. Then,

P

(∣∣∣∣∣
n∑
i=1

Xi − E[Xi]

n

∣∣∣∣∣ ≥ t
)
≤ 2 exp

(
−n2t2

2
∑n
i=1 σ

2
i

)
.

Usually, we have σ2
i = σ2 for all i. In this case, it holds that

2 exp

(
−n2t2

2
∑n
i=1 σ

2
i

)
= 2 exp

(
−nt2

2σ2

)
.

Example 3.9 (Hoeffding for Bernoulli RV) Let X1, . . . , Xn be independent RV with Xi ∼ Bernoulli(pi)
for some pi ∈ (0, 1). Then, Xi ∈ SG(1/4) and thus,

P
(∣∣X̄n − p̄n

∣∣ ≥ t) ≤ 2 exp
(
−2nt2

)
where X̄n := 1

n

∑n
i=1Xi and p̄n := 1

n

∑n
i=1 pi. Thus, we have that

∣∣X̄n − p̄n
∣∣ ≤√ 1

2n
log

(
1

δ

)
with probability at least 1− δ.
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