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4.1 Comparing Hoeffding and Chernoff Bounds

Last time we proved Hoeffding’s Inequality, which states that for any independent random variablesX1, . . . , Xn

with Xi ∈ SG(σi) and µi = E(Xi), i = 1, . . . , n, we have
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In particular, if µi = µ and σ2
i = σ2, for some µ ∈ R and σ2 > 0, we have
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Example 1. Let X1, . . . , Xn
iid∼ Bernoulli(p), for some 0 < p < 1. Set X̄n = 1

n

∑n
i=1Xi. We know

(Xi − p) ∈ SG(1/4) by results from the last class, for all i = 1, . . . , n. Therefore, by Hoeffding’s inequality,

P
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}
≤ 2 exp

(
−2nt2

)
, ∀t > 0.

To invert this bound, set δ = 2 exp(−2nt2) ∈ (0, 1). Solving for t, we see that with probability at least 1− δ,

|X̄n − p| ≤
√

1

2n
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One often sets δ = 1
nc for some c > 0. For example, we have that with probability at least 1− 1

n ,
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Alternatively, one has
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)
.
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Hoeffding’s inequality is not, however, the sharpest concentration inequality in general. Note that the above

calculations would similarly hold for any bounded random variable. Therefore, we could hope that we would

obtain a tighter inequality by using more information about the Xi than merely their boundedness. It indeed

turns out that Chernoff’s Inequality yields an improvement on Hoeffding’s inequality whenever p is small.

Recall that if X1, . . . , Xn are random variables supported in [0, 1], such that E(Xi) = pi, then Chernoff’s

Inequality yields
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and,
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See also [HR90] for more on these inequalities.

Example 2 (Example 1 Continued). Let X1, . . . , Xn
iid∼ Bernoulli(p). Hoeffding’s inequality gave

p− X̄n ≤
√

1

2n
log(1/δ), (4.3)

with probability at least 1− δ. On the other hand, (4.1) yields

P
{
p− X̄n ≥ εp

}
≤ exp
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2
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)
, ∀ε ∈ (0, 1).

Therefore, provided p ≥ 2
n log(1/δ),

p− X̄n ≤
√

2p

n
log(1/δ), (4.4)

with probability at least 1 − δ. Clearly, when p is fixed, Chernoff’s bound (4.4) is nearly the same as

Hoeffding’s bound (4.3), as far as rates are concerned. On the other hand, if we let p ≡ pn so that pn → 0,

then (4.4) provides a significant improvement upon (4.3). This happens becase the variance of a Bernoulli

random variable is upper bounded by p, so if pn → 0, its the variance is shrinking as the sample size grows.

Chernoff’s inequality incorporates this information, thus yielding a tighter bound.

See [SN06], for an application of Bernoulli random variables with parameter pn → 0.

4.2 Equivalent Definitions of Sub-Gaussian Random Variables

Sub-Gaussianity can equivalently be characterized using Orlicz norms, as will be explored in the second

assignment. It turns out that Sub-Gaussian random variables are also uniquely characterized by their

moments, which we describe in the following proposition.
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Proposition 1. Let Γ(x) =
∫∞
0
tx−1e−tdt be the Gamma function. If X ∈ SG(σ2), then

E[|X|p] ≤ p2p/2σpΓ(p/2), ∀p > 0.

In particular, there exists C > 0 not depending on p such that
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1
p ≤ Cσ√p.

Proof. We have,

E[|X|p] =

∫ ∞
0

P(|X|p ≥ u)du

=

∫ ∞
0

P(|X| ≥ u
1
p )du

≤ 2

∫ ∞
0

exp

{
− u2

2σ2

}
du

= E[|X|p] ≤ (2σ2)
p
2 p

∫ ∞
0

ett
p
2−1dt

(
where t =

u
2
p

2σ2

)
= (2σ2)

p
2 pΓ

(p
2

)
.

Remark. For example, if X ∼ N (0, σ2), we have

E[|X|p] =
σp2

p
2 Γ(p+1

2 )
√
π

.

4.3 Sub-Exponential Random Variables.

In this section, we consider a broader class of distributions than the Sub-Gaussian family, call the Sub-

Exponential family. We will see that interesting tail bounds can still be derived for random variables

belonging to this collection. One motivation for its definition is that Sub-Gaussian random variables are not

closed under taking squares, in the sense that X ∈ SG(σ2) does not imply X2 is Sub-Gaussian. For example,

the square of a standard Gaussian is a Chi-Squared random variable, which cannot be Sub-Gaussian since

its moment generating function is not defined on the entire real line.

Example 3. Let X ∼ Laplace(b) for b > 0. Then it can be shown that

P(|X| ≥ t) ≤ exp(−tb), ∀t > 0.

This is a different tail behaviour than what we are used to for Sub-Gaussian random variables, and indeed,
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we note that X 6∈ SG(σ2) since its moment generating function is only defined on a subset of the real line:

E[eλX ] =
1

1− λ2
b2, ∀|λ| < 1

b
.

Definition 1 (Sub-Exponential Random Variable). We say that a random variable X is Sub-Exponential

with parameters ν, α > 0, and we write X ∈ SE(ν2, α), if

E
[
eλ(X−E(X))

]
≤ eλ

2ν2

2 , ∀|λ| < 1

α
.

Remark. An immediate consequence of the definition is that SG(σ2) ⊆ SE(σ2, 0). Thus, all Sub-Gaussian

random variables are also Sub-Exponential.

Example 4. Let Z ∼ N (0, 1), and X = Z2 ∼ χ2
(1), E(X) = 1. Let λ < 1

2 . Then,
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}
(?)

≤ exp

{
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2

}
.

Thus, X ∈ SE(4, 4). Note that (?) follows from the following elementary inequality

− log(1− u)− u ≤ u2

2(1− u)
, ∀u ∈ (0, 1),

with u = 2λ. Also, it is possible to show that

P
(
X − 1 > 2t+ 2

√
t
)
≤ e−t, ∀t > 0.

Note that there is an additional term 2t here compared with the usual bounds we had for Sub-Gaussian

random variables. This accounts for the possibly thicker tails of X.

Properties of SE(ν2, α).

(P1) Squares and products of centered sub-Gaussians are Sub-Exponential:

X ∈ SG(σ2) =⇒ X2 ∈ SE(256σ4, 16σ2).

(P2) Suppose X is a random variable with Var[X] = σ2 and |X − E(X)| ≤ b almost everywhere, for some
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b > 0. Then, X ∈ SE(2σ2, 2b). Unlike Sub-Gaussian bounded random variables, the variance of X appears

in the Sub-Exponential parameters.

Proof. Let |λ| < 1
2b . Then,
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Tail Bounds for Sub-Exponential Random Variables. We are now in a position to derive a tail bound

for Sub-Exponential random variables.

Theorem 1. Let X ∈ SE(ν2, α), and t > 0. Then,

P {X − E(X) ≥ t} ≤

exp
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2ν2

}
, t ≤ ν2

α

exp
{
− t

2α

}
, t > ν2

α

.

Equivalently,

P{X − E(X) ≥ t} ≤ exp
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2
min
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t

α
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.
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