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Recall:

Y = Xβ∗ + ε

where X is the fixed design matrix, ε ∈ SGn(σ2).

We have:

β∗ = (XTX)−1XTY

as the OLS solution (which can be one of infinitely many solutions).

Our target for inference is Xβ∗.

Theorem 12.1 There exists universal constants c > 0 s.t:

1

n
||X(β̂ − β∗)||2 ≤ Cσ2(

r + log(1/d)

n
)

where r = rank(XTX).

Proof:

Step 1: as per last time, use basic inequality:

||X(β̂ − β∗)||2 ≤ 2εT (β̂ − β∗)

= 2εT
X(β̂ − β∗)
||X(β̂ − β∗)||

And so, ||X(β̂ − β∗)|| ≤ 2εT X(β̂−β∗)

||X(β̂−β∗)||
which is an unit vector in Rn.

The wrong step here would be to bound the RHs using εT v ∈ SG(σ2), which is true for each fixed v, but

not true for X(β̂−β∗)

||X(β̂−β∗)||
which is random and depends on ε.

This relates to the principle not to use data to both identify the parameter of interest and estimate the
parameter.
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Instead the right thing to do is to use a crude bound via discretization:

||X(β̂ − β∗)|| ≤ 2supv∈Bn
εT v

A slightly more refined approach use that X has rank r:

Let Φ be a n× n matrix with orthonormal columns, which span the column range of X, i.e X(β̂ − β∗) = Φz
for some vector z.

Then:

εT
X(β̂ − β∗)
||X(β̂ − β∗)||

= εT
Φz

||Φz||
=
ε̃T z

||z||

where ε̃ = ΦT ε ∈ Rr and making use of the fact that ||Φz|| = ||z|| ⇒ ||X(β̂ − β∗)|| ≤ 2supz∈Br
ε̃T z.

We have that ε̃ ∼ SGr(σ
2) (since vT ε̃ = (vTΦ)ε ∈ SG(σ2)).

By continuity:

||X(β̂ − β∗)||2 ≤ 4supz∈Br
(ε̃T z)2

E[supz∈Br
(ε̃T z)2] = E[

r∑
j=1

ε̃2j ] ≤ rσ2

And so:
1

n
E[||X(β̂ − β∗)||2] ≤ 4σ2 r

n

To obtain a bound about the probability, we use:

• supz∈Br
(ε̃T z)2 = (supz∈Br

ε̃T z)2

• supz∈Br
ε̃T z ≤ 2maxw∈N1/2

ε̃Tw

And so:

P (supz∈Br
ε̃T z ≥ t) ≤ P (2maxw∈N1/2

ε̃Tw ≥
√
t)

≤ |N1/2| exp(−t/(8σ2))

by Hoeffding for sub-Gaussian and union bound.

Reflection: basic inequality, sup out, maximal inequality are common techniques.

Extensions: Let λmin(X
TX
n ) be the smallest eigenvalue of XTX

n , assume it’s positive.
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Let A be PSD, then using the fact that ||X|2 ≤ XTAX
λmin(A) we get that:

||β̂ − β∗||2 ≤ 1/n||X(β̂ − β∗)||2

λmin(X
TX
n )

.

Penalized Regression/Lasso

Penalized regression:

β̂ ∈ minβ∈Rd ||Y −Xβ||2 + λnf(β)

which includes a penalty term for the complexity of β.

A classic penalty term is f(β) = ||β||2 (ridge regression):

βridge = (XX + λnI)−1XTY

which is always unique even if n > d.

The interpretation is, consider the SVD decomposition of X: X = UΛUT . Plugging this in:

Xβ̂ridge = X(XTX + λI)−1XTY = UΛUTU(Λ2 + λI)−1UTUΛUTY

= UHUTY

where H is a diagonal matrix with Hjj =
σ2
j

σ2
j+λ

.

And so, Xβ̂ridge =
∑r
j=1 uj

σ2
j

σ2
j+λ
〈 uj , Y 〉.

We can see that ridge gives higher weight to directions uj with large σ2
j and may be considered a smarter

projection, whereas for OLS, all basis uj is weighted the same amount.


