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Last time, we talk about the prediction bound for ordinary least square ridge regression. Let’s first recall
the setting of the problem.

16.1 OLS regression in high dimension

Assume that Y follows the standard linear model, such that Y = Xβ∗+ ε, where X is some n×d fixed design
matrix, and ε is a n dimension vector of independent SG(σ2) random variable. Then, we have the ordinary
least square estimator

β̂OLS = (XTX)+XTY, (16.1)

where (A)+ denotes the pseudo inverse of matrix A, i.e. only take inverse of the positive eigenvalue of A.

Then the mean squared error for β̂OLS is

MSE(β̂OLS) =
1

n
||X(β̂ − β∗)||2 . σ2 (r + log 1/δ)

n
. (16.2)

where r = rank(XTX).

From last lecture, we have that

||β∗ − β̂OLS||2 ≤
MSE(β̂OLS)

λmin(XTX
n )

,

where λmin(A) is the minimal eigenvalue of matrix A. This implies estimating β∗ is much harder than Xβ∗.

16.2 Penalized regression

One possible way to tackle the high dimensional regression is adding penalization. Say instead of minimizing
the ordinary square loss, we would like to find β̂ such that

β̂ = argminβ∈Rd{
1

2n
||Y − Xβ||2 + λnf(β)}, (16.3)

where λn is the penalty parameter which is positive, and f(β) represents the penalty for complexity or size
of β.

One classical penalty is letting f(β) = ||β||2, which will result in the ridge estimator β̂ridge = (XTX +
λnI)−1XTY . As we mentioned in the last lecture,

Xβ̂ridge =

r∑
j=1

uj
σ2
j

λ+ σ2
j

〈uj , Y 〉,
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where u1, . . . , ur are the orthogonal basis for the column space of X, and σ1, . . . , σr are the singular value
of X, which makes σj the j-th eigenvalue of XTX. Therefore, Xβ̂ridge is actually the projection of Y onto
the column space of X based on weights σ1, . . . , σr. We gain an estimator with clear interpretation and
not much condition on X simply by adding penalty term to the objective function. This intuitively tells us,
penalty is good for high dimensional case !

16.2.1 Common penalized regression estimators

By setting the penalty term f(β) in RHS of (17.3) to different norms of β, we can have the following
estimators of β∗ :

• Ridge estimator: β̂ridge = argminβ∈Rd
1
2n ||Y − Xβ||2 + λ||β||2

• Lasso estimator: β̂lasso = argminβ∈Rd
1
2n ||Y − Xβ||2 + λ||β||1

• Best subset selection estimator: β̂BSS = argminβ∈Rd
1
2n ||Y − Xβ||2 + λ||β||0

where || || denote the l2 norm of a vector and, and || ||1 denotes the l1 norm of a vectoe, and || ||0 denotes
the l0 norm of a vector, i.e. number of non-zero entries of a vector.

Specifically, if the columns of X are orthogonal normal, i.e. XTX = Ir, then we will have the following simple
closed form of those estimators above.

β̂ridge =
XTY
1 + λ

, β̂lasso = tsoft(XTY, λ/2), β̂BSS = thard(XTY,
√
λ).

Here tsoft(·, λ) is an element wise soft threshold operator defined as ∀x ∈ Rd, for i = 1, . . . , d,

tsoft(x, λ)i =


xi − λ, if xi > λ

xi + λ, if xi < −λ
0, otherwise .

On the other hand, thard(·, λ) is an element wise hard threshold operator defined as ∀x ∈ Rd, for i = 1, . . . , d,
thard(x, λ) = xiI{|xi| > λ}.

16.2.2 Normal mean problem

For random vector Y ∼ Nd(µ, σ2Id), where µ is an unknown vector, and σ2 is an known parameter, we would
like to estimate the mean parameter µ. Define the mean square error of estimator µ̂ for µ as MSE(µ̂) =
E||µ̂− µ||2.

Take the most familiar estimator – the maximum likelihood estimator µ̂mle = y as an example, we have
MSE(µ̂mle) = dσ2; In fact, µ̂mle is not a very good estimator, for example, when d > 3, we have the James
estimator µ̂JS = (1− d−2

||y||2 )y always dominates the µ̂mle, i.e. it always achieve lower MSE than µ̂mle.

When we have more information about µ, like the information that µ has many zeros or some other sparse
structures, then we could derive other better estimators for µ. One could refer to work of Iian Johnstone at
Stanford for more information.
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16.2.3 Comments on Best subset selections

Same reason as µ has many zeros could result in better estimators (smaller MSE) in normal mean problem,
in linear regression problem, we could also assume that some (in fact, many) coordinates of β∗ are zeros
(this is actually true when d > n), to have better estimators of β∗.

In fact, if one is interested in estimating β∗ and its support {i : βi 6= 0}, then ridge regression is no good,
since it only makes the coordinates value of estimators as small as possible, but rarely set them to zeros, so
it is hard to identify the support set of β∗. Ideally, best subset selection is more suitable here:

β̂BSS = argmin
1

2n
||Y − Xβ||2 + λ||β||0

And we have the following bound for the estimator Xβ̂BSS, stated as Theorem 16.1.

Theorem 16.1 For the best subset selection estimator β̂BSS, for any δ ∈ (0, 1), with probability at least
1− δ, we have

1

n
||X(β̂BSS − β∗)||2 . ||β∗||0

σ2 log (ed/δ)

n

where e is the Euler’s number.

However, the best selection question is a non-convex problem, and thus has some computational difficulty:
normally we do not know the support of β∗, which means we have to try O(Ckn) candidates of β̂BSS, which is

really computational expensive. If we know the support of β∗, then β̂BSS is perfect since it would be easy to
compute and almost as good as oracle. On the other hand, if we could put some assumptions on X, maybe
we can gain some similar results that is nearly as good as oracle and also computational feasible.

16.2.4 Comments on Lasso

Recall the definition of Lasso estimator:

β̂lasso = argminβ∈Rd

1

2n
||Y − Xβ||2 + λ||β||1.

Compare to the ridge and best subset selection, Lasso, however, could not only do model selection (i.e. setting
some (depend on λ) coordinates of β as zeros), but also is a convex problem (when n > d) that is easy to
compute. Also, Lasso will have unique solution if columns of X are drawn from continuous distributions.

There are other Lasso-like problems, which fundamentally is Lasso problem.

• minβ∈Rd ||β||1, s.t. 1
2n ||Y − Xβ||2 ≤ B

• minβ∈Rd
1
2n ||Y − Xβ||2, s.t. ||β||1 ≤ B

The following theorem 16.2 states a bound for Lasso estimator, which is known as slow rate for Lasso.

Theorem 16.2 If λ = λn ≥ || ε
TX
n ||∞, then for any Lasso solution β̂lasso, we have

||X(β̂lasso − β∗)||2

n
≤ 4||β∗||1λn
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Proof: We have basic inequality:

1

2n
||X(β̂lasso − β∗)||2 ≤ εT

X(β̂lasso − β∗)
n

+ λn(||β∗||1 − ||β̂lasso||1). (16.4)

This is because Y = Xβ + ε and

1

2n
||Y − Xβ̂lasso||2 + λ||β̂lasso||1 ≤

1

2n
||Y − Xβ∗||2 + λ||β∗||1

Then we bound the RHS of basic inequality (16.4) with

||ε
TX
n
||∞||β̂lasso − β∗||1 + λn(||β̂lasso||1 − ||β∗||1)

≤ λn(||β̂lasso||1 + ||β∗||1) + λn(||β∗||1 − ||β̂lasso||1)

= 2λn||β∗||1

This concludes the proof.

Theorem 16.2 is useful if we have an upper bound on λn, that holds with high probability. We will talk
about this more carefully in the next lecture.


