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This lecture covers slow and fast rates for the Lasso with the restricted eigenvalue condition.

17.1 Slow rate for the Lasso

Last lecture we proved Theorem 17.1 which is known as slow rate for the Lasso.

Theorem 17.1 (Theorem 7.5 in the book.). Let X ∈ Rnxd and β∗ ∈ Rd an unknown vector in the

standard linear model y = Xβ∗ + ε. If λ = λn ≥
‖XT ε‖∞

n , then any lasso solution β̂lasso satisfies,

MSE(β̂lasso) =

∥∥∥X(β̂lasso − β∗)
∥∥∥2

n
≤ 4 ‖β∗‖1 λn.

Let’s compare MSE(β̂lasso) to the MSE(β̂bss) for best subset selection.

MSE(β̂bss) . ‖β∗‖0 σ
2 log(ed/δ)

n
with probability ≥ 1− δ

MSE(β̂BSS) is almost optimal except the log term. Note that Theorem 17.1 is a deterministic
result. In order to turn it into a more practical one, we ask the question: When can we get w.h.p.
that

λn ≥
∥∥XT ε

∥∥
∞

n
= max
i=1,...,n

|XT
i ε|
n

where Xi is the i’th column of X? Assume maxi ‖Xi‖ ≤
√
Cn for some C > 0 (*), then,
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P

(∥∥XT ε
∥∥
∞

n
≥

)
= P

(
max

i=1,...,n

|XT
i ε|
n
≥ t
)

= P

(
max

i=1,...,n
|XT

i ε| ≥ tn
)

≤
d∑
i=1

P
(
|XT

i ε| ≥ tn
)

(Union Bound)

=

d∑
i=1

P

(
|XT

i ε|
‖Xi‖

≥ tn

‖Xi‖

)
(
|XT

i ε|
‖Xi‖ ∈ SG(σ2) is unit vector)

≤ 2dexp

(
− t2n

2σ2C

)
(Using bound on SG variable and (*))

Then set RHS equal to δ and solve for t. Setting t = λn =
√

2σ2C
n (log(2d) + log(1/δ) yields that

λn ≥
‖XT ε‖∞

n with probability ≥ 1−δ. Plug this into MSE for Lasso, then with probability ≥ 1−δ,

MSE(β̂lasso) ≤ 4 ‖β∗‖1

√
2σ2C

n
(log(2d) + log(1/δ).

Note that this MSE still vanishes, but at a slower rate than BSS. It’s off by a square-root. To
further improve on MSE(β̂lasso), we put additional assumptions on the design matrix.

17.2 Fast rates for the Lasso

To obtain a faster rate of convergence we need stronger assumptions on XTX
n .

Definition 17.2 (Restricted Eigenvalue Condition (Re(α, κ, S))). For S ⊆ {1, . . . , d}, S 6= ∅ and
α ≥ 1, let

Cα(S) = {∆ ∈ Rd : ‖∆Sc‖1 ≤ α ‖∆S‖1} where Sc = {1, . . . , d}\S.

Then, we say that X ∈ Rnxd satisfies REC with respect to S ⊆ {1, . . . , d} and parameters α ≥ 1
and κ > 0 if

1

n
‖X∆‖2 ≥ κ ‖∆‖2 ∀∆ ∈ Cα(S)
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Intuition: Set ∆ = β̂lasso − β∗. Then 1
n ‖X∆‖2 is the MSE of β̂lasso. The function z → ‖Xz‖2

n

can be very flat in the sense that ‖X∆‖2
n can be small but ∆ can still be large.

If XTX
n has a minimum eigenvalue bounded away from zero, then

‖∆‖2 ≤
‖X∆‖2
n

λmin

(
XTX
n

)
which requires that ∆TXTX∆

n ≥ λmin > 0, ∀∆ ∈ Rd.

Theorem 17.3 (Theorem 7.2 in the book.). Assume that X satisfies REC w.r.t. Re(α, κ, S) where

S is the support of β∗, then if λn ≥ 2
‖XT ε‖∞

n , any lasso solution satisfies,

MSE(β̂lasso) =

∥∥∥X(β̂lasso − β∗)
∥∥∥2

n
≤ 9λ2

n

|S|
κ

where 9λ2
n
|S|
κ '

‖β∗‖0
κ

σ2(log(d)+log(1/δ))
n and

∥∥∥β̂lasso − β∗∥∥∥ ≤ 3

κ

√
|S|λn

Also note that |S| = ‖β∗‖0.

Proof. We first need to show that ∆ = β̂ − β∗ ∈ C3(S). By optimality of β̂, it holds that

1

2n

∥∥∥Y −Xβ̂
∥∥∥2

+ λn

∥∥∥β̂∥∥∥
1
≤ 1

2n
‖Y −Xβ∗‖2 + λn ‖β∗‖1 .

By rearraging, we obtain that,

1

2n
‖X∆‖2 ≤ εTX∆

n
+ λn(‖β∗‖1 −

∥∥∥β̂∥∥∥
1
).

Since β∗ is S-sparse, i.e. supp(β∗) = S,

||β∗||1 − ||β̂||1 = ||β∗S ||1 − ||β∗S + ∆S ||1 − ||β̂Sc ||1
= ||β∗S ||1 − ||β∗S + ∆S ||1 − ||∆Sc ||1

(Since ||β̂||1 = ||β̂S ||1 + ||β̂Sc ||1)

So, by Hölder’s Inequality, it holds that,
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1

n
‖X∆‖2 ≤ 2

‖Xtε‖∞
n

‖∆‖1 + 2λn

Now, using the facts that

1. ‖β∗S + ∆S‖1 ≥ ‖∆S‖1 − ‖∆S‖1

2. 2
‖XT ε‖∞

n ≤ λn.

1

n
‖X∆‖2 ≤ [||∆S ||1 + ||∆Sc ||1 + 2||∆S ||1 − 2||∆SC ||1]

= λn︸︷︷︸
∆∈C3(S)

(3||∆S ||1 − ||∆Sc ||1)︸ ︷︷ ︸
≥0

Next,

λn (3||∆S ||1 − ||∆Sc ||1) ≤ λn3 ‖∆S‖1
≤ 3λn

√
|S| ‖∆S‖

≤ 3λ
√
|S| ‖X∆S‖√

nκ
(by REC)

Thus,

1√
n
‖X∆‖ ≤ 3λn

√
|S|
κ

taking square of both sides gives

1

n
‖X∆‖2 ≤ 9λ2

n

|S|
κ

as claimed. Similarly, for the second part

√
κ ‖∆‖ ≤

REC

‖X∆‖√
n

≤
Above bound

3λn

√
|S|√
κ

So, with probability ≥ 1− δ,

||∆|| = ||β̂ − β∗|| ≤ 3λn

√
|S|
κ

.
√
‖β∗‖∞σ

√
(log(d) + log(1/δ)

κ
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