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In Section 18.1, we will consider selection consistency (also known as sparsistency) for the Lasso.
In Section 18.2, we will introduce oracle inequalities.

18.1 Sparsistency for Lasso

In this section we continue analyzing the Lasso estimator for linear regression. Because the Lasso
behaves like a soft-thresholding operator, it returns sparse solutions. This motivates us to ask the
question if Lasso recovers the right support.

Goal: Estimate S := supp (β∗) exactly. This is generally very hard.

Define XS as the sub-matrix of X composed only by the column belonging to an index set S. Then
suppose the following assumptions hold:
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1. The Lasso solution is unique.
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If in addition, minj∈S
∣∣β∗j ∣∣ > Bn(λn,X), then Ŝ = S.

Remark: If for some v > 0, CX ≥ 1 + v, then with probability at least 0.5, there is no model
selection consistency.

Proof technique. See Martin Wainwright’s seminal paper for the proof [MW06]. We skip the
proof in this class. The proof technique used is called the Primal-dual witness construction.

18.2 Oracle inequalities

Oracle inequalities are a framework to compare bounds on error rates of an estimator to an oracle
estimator. An oracle estimator is typically either an unknown optimal estimator, or it makes use of
additional information not known to the algorithm. In this section we introduce oracle inequalities
for regression.

18.2.1 Oracle inequalities for regression

We observe n pairs (Y1,x1), . . . , (Yn,xn), where Yi’s are independent random variables and xi’s are
fixed (non-random) points in Rd such that for every i,

Yi = f∗(xi) + εi,

where εi
iid∼ N(0, σ2). Note that for linear regression we assumed f∗(xi) = xTi β for some β.

Suppose we have a dictionary of functions on Rd: D = {f1, . . . fm}. The goal is to estimate f∗ using

some linear combination of functions in D: f̂(·) =
∑m
j=1 θ̂jfj(·) for some (θ1, . . . , θm) ∈ K ⊂ Rm.

Remark. If m = d and fj(x) = xj , then f(x) =
∑m
j=1 θjfj(x) = θTx. Observe that this is the

same as linear regression.

Now, for any estimator f̂ , define

R(f̂) :=
1

n
E

[
n∑
i=1

(
f̂(xi)− f∗(xi)

)2]
= E

[
MSE(f̂)

]
=

E

[∥∥∥∥f̂∼− f∗∼
∥∥∥∥2
2

]
n

.

where in the last term we define f̂
∼

as the column vector in Rn with the i’th entry equal to f̂(xi).

Note that if f is a fixed non-random linear combination of functions in D, then

R(f) =
1

n

n∑
i=1

(f(xi)− f∗(xi))2.

We first consider an oracle defined as follows:
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• For θ ∈ K ⊂ Rm define,

fθ(·) =

m∑
j=1

θjfj(·).

• Then define fORACLE such that it satisfies,

R(fORACLE) = inf
θ∈K

R(fθ).

Note that none of the entities in the above definition are stochastic. Thus we can say:

MSE(fORACLE) = inf
θ∈K

MSE(fθ).

• Remark. f∗ 6= fORACLE, unless f∗ can be represented as linear combinations in D.

Our target is to produce an estimator f̂ such that R(f̂) is as close as possible to R(fORACLE). An

estimator f̂ satisfies an oracle inequality if,

R(f̂) ≤ C ·R(fORACLE) + T (n,D, f∗,K, d),

where C ≥ 1 and T is vanishing in N . The inequality is said to be sharp if C = 1.

Remark. Instead of in expectation, we can give similar bounds with high probability:

P
[
MSE(f̂) ≤ C ·MSE(fORACLE) + T (n,D, f∗,K, d, δ)

]
≥ 1− δ.

18.2.2 Oracle inequality for Ordinary Least Squares (OLS)

For OLS, we are given a matrix Xn×m and we think of functions as fj(xi) = Xij , where xi is the

i’th column of X. Consider f̂OLS = fθ̂OLS .

Theorem 18.2 Assume for each i, εi ∈ SG(σ2). Then for δ ∈ (0, 1), with probability at least 1−δ,

MSE(f̂OLS) ≤ inf
θ∈Rm

MSE(fθ) + Cσ2

(
m+ log(1/δ)

n

)
.

In the next lecture we prove this bound, and we consider such bounds for the Lasso.
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