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In these notes we finish our discussion of matrix concentration inequalities. We then see some applications
of matrix concentration inequalities to covariance estimation and networks.

Remark on notation: In these notes the norm function || · || refers to the operator norm for matrices and
the Euclidean norm for vectors.

13.1 Matrix concentration inequalities

Recall the matrix Bernstein inequality.

Theorem 13.1 (Matrix Bernstein inequality) Let X1, . . . , Xn be mean-zero, symmetric, d× d random ma-
trices such that ||Xi|| ≤ C almost surely for all i ∈ {1, . . . , n}. Then for all t ≥ 0,
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where σ2 =
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i=1 E[X2
i ]
∣∣∣∣ is the norm of the matrix variance of the sum.

Recall that, for a symmetric d× d matrix A, ||A|| = maxi=1,...d |λi(A)| = max{λmax(A), λmax(−A)}, where
{λ1, . . . , λd} is the spectrum of A. By union bound,

P (max{λmax(A), λmax(−A)} ≥ t) ≤ P (λmax(A) ≥ t) + P (λmax(−A) ≥ t) . (13.1)

Last time we saw that
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As it turns out the same bound holds for λmax (−
∑n
i=1Xi) . Just repeat the proof using −

∑n
i=1Xi instead

of
∑n
i=1Xi. Combine these bounds by 13.1 to achieve the result.

We can derive matrix concentration inequalities for other types of matrices as well. First we define sub-
Gaussian and sub-exponential random matrices. Recall that Sd×d is the set of d×d symmetric matrices, and
Sd×d+ is the set of d × d symmetric, positive-semidefinite matrices. Define the moment-generating function
ψQ : R→ Sd×d of a random matrix Q by

ψQ(λ) = E
[
eλQ

]
.
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Definition 13.2 (Sub-Gaussian matrices) A centered symmetric random matrix Q ∈ Sd×d is sub-Gaussian
with parameter V ∈ Sd×d+ if, for all λ ∈ R,

ψQ(λ) � eλ
2V
2 .

Definition 13.3 (Sub-exponential matrices) A centered, symmetric random matrix Q ∈ Sd×d is sub-exponential
with parameters V ∈ Sd×d+ and α > 0 if, for all |λ| < 1

α ,

ψQ(λ) � eλ
2V
2 .

Notice that, similar to the scalar case, a sub-Gaussian matrix with parameter V is sub-exponential with
parameters V and 0. We are now ready to state the matrix analogue of Hoeffding’s inequality.

Theorem 13.4 (Matrix Hoeffding’s inequality) Let X1, . . . , Xn be centered, independent, symmetric, d× d
random matrices that are sub-Gaussian with parameters V1, . . . , Vn. Then for all t ≥ 0,
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i=1 Vi

∣∣∣∣.
There also exists a matrix analogue of Bernstein’s inequality that holds for random matrices that satisfy
the sub-exponential condition. This concentration inequality is a more general version of Theorem 13.1.
Indeed, random matrices with bounded operator norm are sub-exponential. We do not state the more
general Bernstein’s matrix inequality in these lecture notes; see instead [WW2019].

We can extend the matrix concentration inequality 13.1 to matrices that are non-symmetric or (more gen-
erally) non-square. The idea is to use a common linear algebra trick involving block matrices. Let A be a
d1 × d2 matrix. Let the (d1 + d2)× (d1 + d2) matrix Q be defined by

Q =

[
0d1×d2 A
AT 0d2×d1

]
.

We can show that ||Q|| = ||A||. Additionally, if Q1, . . . , Qn are independent matrices of the above form, we
can straightforwardly bound ∣∣∣∣∣

∣∣∣∣∣ 1n
n∑
i=1

var(Qi)

∣∣∣∣∣
∣∣∣∣∣ .

Using these facts, we can derive a Bernstein-type bound for the sum of independent, non-symmetric matrices
with bounded operator norm. See [WW2019] exercise 6.10 for details.

Under certain conditions, we can replace d in 13.1 by dint
(∑n

i=1 E[X2
i ]
)
, where

dint (A) =
tr(A)

||A||

for positive semi-definite A. This produces a sharper bound. See for [T14] details.

13.2 Applications of matrix Bernstein inequality

Our first application of the matrix Bernstein inequality is covariance matrix estimation. We previously saw
that we can bound the covariance matrix of a sub-Gaussian random vector using an exponential tail bound.
Here, we derive an exponential tail bound on the covariance matrix of a bounded random vector.
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Theorem 13.5 Let X1, . . . , Xn be independent, centered random vectors in Rd. Suppose that, for all i ∈
{1, . . . , n}, Var(Xi) = Σ and ||Xi||2 ≤

√
C almost everywhere for some C > 0. Then for all t ≥ 0,
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where Σ̂n = 1
n

∑n
i=1XiX

T
i is the sample covariance.

Proof: DefineQi = XiX
T
i −Σ.We use matrix Bernstein inequality to bound

∑n
i=1(1/n)Qi =

∑n
i=1(1/n)XiX

T
i −∑n

i=1(1/n)Σ = Σ̂n − Σ. To apply matrix Bernstein inequality we must verify several conditions on the
(1/n)Qis.

i. mean zero: E [(1/n)Qi] = (1/n)
[
E
(
XiX

T
i

)
− Σ

]
= 0.

ii. symmetric: XiX
T
i and Σ are both symmetric, and so the difference (1/n)Qi = (1/n)(XiX

T
i − Σ) is

symmetric.

iii. d × d: The dimension is obvious.

iv. independent: The independence of the Xis implies the independence of the Qis.

v. bound on ||(1/n)Qi|| = (1/n)||Qi|| : Observe by triangle inequality that

||Qi|| = ||XiX
T
i − Σ|| ≤ ||XiX

T
i ||+ || − Σ|| = ||XiX

T
i ||+ ||Σ||. (13.2)

We bound ||XiX
T
i || using Cauchy-Schwarz:

||XiX
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yTXiX
T
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Moreover, by Jensen’s inequality,
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)
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Combining our bounds for ||Σ|| and ||XiX
T
i || with 13.2, we find ||(1/n)Q|| ≤ 2C/n.
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We therefore see that σ2 ≤ C||Σ||/n.

Now we are ready to apply matrix Bernstein inequality:
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Our next application of the matrix Bernstein inequality is to network models. Let G be a random, undirected
graph on n nodes. Let A ∈ Rn×n be the adjacency matrix of G, i.e.,

Aij =

{
1 if node i is connected to node j

0 else
.
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Because G is undirected, A is symmetric. Assume that, for all i ∈ {1, . . . , n}, Aii = 0 (i.e., no loops).
Additionally, assume that Aij ∼ bern(pij) and that the Aijs are independent.

We assume G takes a special form to simplify the estimation problem. Let k ∈ N. Let B ∈ Rk×k be a matrix
of probabilities. Let C : {1, . . . n} → {1, . . . , k} be a surjective function. Assume there exists a partition of
{1, . . . , n} into k communities such that

pij =

{
BC(i),C(j) if i 6= j

0 if i = j.
.

This is called the stochastic block model. The stochastic block model is simpler than the general graphical
model because the stochastic block model is parameterized only by probabilities between and within blocks.

The simplest kind of stochastic block model is the so-called pointed partition model. For this model we
assume

pij =


p if i, j in same community (and i 6= j)

q if i, j in different communities

0 if i = j

.

We can write B = (p− q)Ik + q1k1Tk , where Ik is the k × k identity matrix and 1k is the (column) vector of
ones in Rk.

When we estimate a pointed partition model, we assume p, q and the communities themselves are unknown.
Our goal typically is to recover the communities. To do this we can use spectral clustering, which requires
us to know the number of communities k. The idea is as follows:

1. Compute the k leading eigenvectors u1, . . . , uk ∈ Rn of A.

2. Form the n × k matrix E = [u1, . . . , uk]. The rows of E form n points in Rk. Apply the k−means
clustering algorithm to the rows of E. The clusters provide an estimate of the communities in the
graph G.

To prove that spectral clustering works (i.e., recovers the communities), we must show that ||A − E(A)|| is
well-controlled. To do this we can use the matrix Bernstein inequality. We save this for next time.
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