36710-36752, Fall 2020 Homework 2

Due Mon, Oct 5 by 5pm.

- 1. Let $(\Omega, \mathcal{F}, \mu)$ be a measure space, (S, \mathcal{A}) a measurable space and $f: \Omega \to S$ a measurable function. Show that, for arbitrary subsets A, A_1, A_2, \ldots of S,
 - (a) $f^{-1}(A^c) = (f^{-1}(A))^c$;
 - (b) $f^{-1}(\bigcup_n A_n) = \bigcup_n f^{-1}(A_n)$ and
 - (c) $f^{-1}(\cap_n A_n) = \bigcap_n f^{-1}(A_n)$.

(The last two identities actually hold also for uncountable unions and intersections). Let \mathcal{A} be a σ -field over S. Prove that the collection $f^{-1}(\mathcal{A}) = \{f^{-1}(A), A \in \mathcal{A}\}$ of subsets of Ω is a σ -field over Ω (in fact, the smallest σ -field on Ω that makes f measurable).

2. (The induced measure is a measure) Let $(\Omega, \mathcal{F}, \mu)$ be a measure space, (S, \mathcal{A}) a measurable space and $f \colon \Omega \to S$ a measurable function. Show that the measure induced by f and μ , i.e. the function ν over \mathcal{A} given by

$$A \mapsto \mu\left(f^{-1}(A)\right), \quad A \in \mathcal{A},$$

is a measure. Show by example that ν need not be σ -finite if μ is σ -finite.

- 3. Let f be an integrable real-valued function over a measure space $(\Omega, \mathcal{F}, \mu)$. Show that f is finite almost everywhere $[\mu]$. Hint: you may assume that $f \geq 0$ (why?); then, you only need to show that $f < \infty$ almost everywhere $[\mu]$.
- 4. Let $\{f_n\}_n$ be a sequence of real valued function on some measurable space (Ω, \mathcal{F}) . Show that the set $\{\omega \colon \lim_n f_n(\omega) \text{ exists}\}$ is measurable. Hint: express $\lim_n f_n(\omega)$ using $\lim_n f_n(\omega)$ and $\lim_n f_n(\omega)$, which are measurable...
- 5. Let P and Q two probability measures on some measurable space (Ω, \mathcal{F}) and let μ be any σ -finite measure on that space such that both P and Q are absolutely continuous with respect to μ (for example, you may take $\mu = P + Q$). Let $p = \frac{dP}{d\mu}$ and $q = \frac{dQ}{d\mu}$ be the corresponding Radon-Nikodym derivatives.

The total variation distance between P and Q is defined as

$$d_{\text{TV}}(P,Q) = \sup_{A \in \mathcal{F}} |P(A) - Q(A)|.$$

This is a very strong notion of distance between probability distributions: if $d_{\text{TV}}(P,Q) < \epsilon$, for some small $\epsilon > 0$, then the P-probability and Q-probability of any event will differ by at most ϵ . It can be showed that d_{TV} is a metric over the set of all probability measure on (Ω, \mathcal{F}) . In particular, $d_{\text{TV}}(P,Q) = 0$ if and only if P = Q.

- (a) Show that $d_{TV}(P,Q) = 1$ if and only if P and Q are mutually singular.
- (b) Prove that the following equivalent representation of the total variation distance:

$$d_{\text{TV}}(P,Q) = \frac{1}{2} \int_{\Omega} |p - q| d\mu.$$

Thus, the total variation distance is half the L_1 distance between densities. Hint: in the definition of total variation distance you may want to take $A = \{q \ge p\}$. Show that the supremum is achieved by this set...

(c) Total variation distance and hypothesis testing. Let X be a random variable taking values in some measurable space (S, \mathcal{A}) . Suppose we are interested in testing the null hypothesis that the distribution of X (a probability measure on (S, \mathcal{A}) !) is P versus the alternative hypothesis that it is Q. We do so by devising a $test\ \phi$, which is a measurable function from S into $\{0,1\}$ such that $\phi(x)=1$ (resp. $\phi(x)=0$) signifies that the null hypothesis is rejected (resp. not rejected) if X takes on the value x. To measure the performance of a given test function ϕ we evaluate its risk, defined as the sum of type I and type II errors:

$$R_{P,Q}(\phi) = \int_{S} \phi dP + \int_{S} (1 - \phi) dQ.$$

Show that

$$\inf_{\phi} R_{P,Q}(\phi) = 1 - d_{\text{TV}}(P,Q),$$

where the infimum si over all test functions.

The above result formalizes the intuition that the closer P and Q are, the harder it is to tell them apart using any test function. In particular, $R_{P,Q}(\phi) = 0$ – i.e., it is possible to perfectly discriminate between P and Q – if and only if the two probability measures are mutually singular.

Hint: use the Neymann-Pearson approach and take ϕ to be the indicator function of the set $\{q \geq p\}$.