36710-36752, Fall 2020 Homework 3

Due Oct 21, by 5pm.

- 1. Let μ be the counting measure on $(\mathbb{R}^1, \mathcal{B}^1)$. Let ν be the Lebesgue measure on $(\mathbb{R}^1, \mathcal{B}^1)$. Show that $\nu \ll \mu$ but there does not exist any function $f \geq 0$, such that $\nu(A) = \int_A f d\mu$ for all $A \in \mathcal{B}^1$. Why does Radon-Nikodym Theorem fail in this case?
- 2. Let μ_i be σ -finite measures, i = 1, 2. Show that if

$$\int \left[\int |f(\omega_1, \omega_2)| \, d\mu_1 \right] d\mu_2 < \infty$$

then

$$\int f d\mu_1 \times \mu_2 = \int \left[\int f(\omega_1, \omega_2) d\mu_1 \right] d\mu_2 = \int \left[\int f(\omega_1, \omega_2) d\mu_2 \right] d\mu_1.$$

- 3. Let X and Y be two independent, integrable random variables.
 - (a) Show that $\mathbb{E}(XY) = \mathbb{E}X\mathbb{E}Y$.
 - (b) Let f and g be two measurable functions (not necessarily distinct) from \mathbb{R} to \mathbb{R} . Show that f(X) and g(Y) are independent. Therefore $\mathbb{E}[f(X)g(Y)] = \mathbb{E}[f(X)]\mathbb{E}[g(Y)]$ if f(X) and g(Y) are integrable. Hint: you may use, without proof, the fact that $\sigma(f(X)) \subset \sigma(X)$ and $\sigma(g(Y)) \subset \sigma(Y)$ (though you should think about why this is the case).
- 4. Assume X and Y are integrable random variables. Prove that, for each r > 0,

$$\mathbb{E}|X+Y|^r \le C_r \left(\mathbb{E}|X|^r + \mathbb{E}|Y|^r\right),\,$$

where $C_r = 1$ if $r \in (0, 1]$ and $C_r = 2^{r-1}$ for r > 1.

Hint: for r > 1 use Jensen's inequality. For $r \in (0,1]$ use the fact that $(a+b)^r \le a^r + b^r$ for all $a, b \ge 0$.

5. Prove Paley-Zygmund's inequality (which is a converse to Markov's inequality): let X be a non-negative random variable with finite variance. Then, for ay $\lambda > 0$,

$$\mathbb{P}\left(X \geq \lambda\right) \geq \frac{\left[\left(\mathbb{E}[X] - \lambda\right) + \right]^2}{\mathbb{E}[X^2]}.$$

If X is non-negative and bounded – that is, $0 \le X \le b$ almost surely for some b > 0 – prove that, for all $\lambda \in (0, \mathbb{E}[X])$,

$$\mathbb{P}\left(X \ge \lambda\right) \ge \frac{\mathbb{E}[X] - \lambda}{b - \lambda}.$$

6. Let $1 \leq p \leq q \leq \infty$. Assume that μ is a probability measure on (Ω, \mathcal{F}) and let f be a measurable function. Show that $||f||_p \leq ||f||_q$ (in particular, this implies that $||f||_{\infty} = \lim_{p \to \infty} ||f||_p$.)