36-710/752 Fall 2020

Advanced Probability Overview

Lecture 02 - Foundations of Measures

Lecturer : Alessandro Rinaldo Scribe: Mike Stanley

2.1 Fields

In the last lecture, we defined a field and a σ -field. We recall those definitions here.

Definition 1 Let Ω be a universe set. A collection \mathcal{F} of subsets of Ω is a field when the following conditions hold:

- 1. $\Omega \in \mathcal{F}$
- 2. $A \in \mathcal{F} \implies A^c \in \mathcal{F} \ (Note, thus \varnothing \in \mathcal{F})$
- 3. $A_1, A_2 \in \mathcal{F} \implies A_1 \cup A_2 \in \mathcal{F}$ (i.e. \mathcal{F} is closed under finite unions and intersections)

Definition 2 A field \mathcal{F} is a σ -field if for every sequence $\{A_n\}_{n\in\mathbb{N}}$ in \mathcal{F} , $\bigcup_{n\in\mathbb{N}} A_n \in \mathcal{F}$ (i.e. closed with respect to countable unions and intersections).

2.1.1 An example of a field without countable additivity

Suppose $\Omega = \mathbb{R}$. Let \mathcal{U} be the collection of unions of finitely many disjoint sets of the form $(a,b], (-\infty,b], (a,\infty), (-\infty,\infty)$ where $-\infty < a \le b < \infty$. \mathcal{U} is a field but is not a σ -field because it is not closed with respect to countable unions. To see this, consider the set (a,b). $(a,b) \notin \mathcal{U}$, but we can define (a,b) as a union of countable elements in \mathcal{U} , namely, $(a,b) = \bigcup_{n \in \mathbb{N}} (a,b-\frac{1}{n}]$.

2.1.2 Creation of σ -fields

Let $A \subset \Omega$. The smallest σ -field containing A is $\mathcal{F} = \{\emptyset, \Omega, A, A^c\}$. This follows directly from the definition of a σ -field, namely inclusion of universe set and closure under complements. Of course, there are also many other σ -fields that contain A (e.g. 2^{Ω} , this is, in fact the largest), but we are interested in the smallest possible σ -field.

Definition 3 More generally, suppose C is a collection of subsets of Ω . $\sigma(C)$ is used to denote the smallest σ -field generated by C, also called the generated σ -field of C.

Intuitively, in order to define a probability of an event (i.e. a subset of some universe set), we need to be able to map every subset of the universe set to the reals, or more specifically [0, 1]. So, it would be nice to find the smallest σ -field that contains all of the sets to which we want to assign probabilities. This goal can be achieved with the above notion of a generated σ -field, in which \mathcal{C} is our collection of subsets. A more particular construct of this type is the Borel σ -field.

Definition 4 Let Ω be a topological space (i.e. a collection of points with neighborhoods around each point). Let C be the collection of open sets of Ω . $\sigma(C)$, i.e. the σ -field generated by the collection of open sets, is known as the Borel σ -field.

For example, suppose $\Omega = \mathbb{R}$. Then, the collection of open sets $\mathcal{C} = \{(a, b) : -\infty < a, b < \infty\}$ can be used to generate the Borel σ -field over \mathbb{R} , and is often with \mathcal{B} .

2.2 Measures

A probability space is a particular form of a measure space. Before defining these terms, first note that $\mathbb{R} = \mathbb{R} \cup \{-\infty\} \cup \{\infty\}$ is known as the *extended reals*.

Definition 5 Let (Ω, \mathcal{F}) be a measurable space, where \mathcal{F} is a σ -field of Ω . A function $\mu: \mathcal{F} \to \overline{\mathbb{R}}_+$ is a measure if

- 1. $\mu(\emptyset) = 0$
- 2. For every sequence $\{A_n\}_{n\in\mathbb{N}}$ of mutually disjoint measurable sets

$$\mu(\bigcup_{n} A_n) = \sum_{n} \mu(A_n) \tag{2.1}$$

This property is known as "countable additivity"

Then, a measure space is a tuple $(\Omega, \mathcal{F}, \mu)$.

A measure on a field \mathcal{F}' is a function $\mu: \mathcal{F}' \to \mathbb{R}_+$ that satisfies the conditions (1) and (2) in the above definition. Additionally, it should be noted that measures can be finite $(\mu(\Omega) < \infty)$ or infinite $(\mu(\Omega) = \infty)$. As we see in the next definition, a probability measure is simply a measure such that $\mu(\Omega) = 1$.

Definition 6 A probability measure is a measure such that $\mu(\Omega) = 1$. If \mathcal{P} is a probability measure, $(\Omega, \mathcal{F}, \mathcal{P})$ is a probability space.

In more standard statistical parlance, \mathcal{F} may be thought of as a collection of events over the universe set Ω . Hence the probability of some event $A \in \mathcal{F}$ is defined with the probability measure, $\mathcal{P}(A)$.

Let us consider two examples of probability measures.

Example 1 Let Ω be countable, i.e. $\Omega = \{\omega_1, \omega_2, \dots\}$, $\mathcal{F} = 2^{\Omega}$, and $\{p_i\}_{i \in \mathbb{N}}$ be such that $p_i \in [0,1]$ and $\sum_i p_i = 1$. Then the function $\mathcal{P} : 2^{\Omega} \to [0,1]$ given by $\mathcal{P}(A) = \sum_{i:\omega_i \in A} p_i$ is a probability measure. This is clearly true since $\mathcal{P}(\varnothing) = 0$ and for mutually disjoint sets $A_1, A_2 \in 2^{\Omega}$, $\mathcal{P}(A_1 \cup A_2) = \sum_{i:\omega_i \in A_1 \cup A_2} p_i = \sum_{i:\omega_i \in A_1} p_i + \sum_{i:\omega_i \in A_2} p_i = \mathcal{P}(A_1) + \mathcal{P}(A_2)$.

Example 2 Let $\Omega \mathbb{R}$ and $\mathcal{F} = \mathcal{B}^1$ (i.e. the Borel σ -field on \mathbb{R}). Define

$$\mathcal{P}((-\infty, a]) = \int_{-\infty}^{a} \frac{1}{\sqrt{2\pi}} \exp^{\frac{-x^2}{2}} dx \tag{2.2}$$

for all $(-\infty, a]$, $a \in \mathbb{R}$. This also defines a probability measure on \mathcal{B}^1 since $\mathcal{P}(\emptyset) = 0$, and for countable disjoint sets $A_1, A_2, \dots \in \mathcal{B}^1$, $\mathcal{P}(\bigcup_n A_n) = \sum_n \mathcal{P}(A_n)$, but properties of integrals.

To make these definitions slightly less abstract, let us consider two more specific types of measures.

Definition 7 Take Ω to be any set and let $\mathcal{F} = 2^{\Omega}$. For any $A \in \mathcal{F}$, the counting measure is defined as $\mu(A) = |A|$.

We may also wish to put a countability criterion onto our measure. The following measure is a regularity condition.

Definition 8 Let $(\Omega, \mathcal{F}, \mu)$ be a measure space. μ is said to be σ -finite if there exists a countable collection of measurable sets $\{A_1, A_2, \dots\}$ such that $\mu(A_n) < \infty$ and $\bigcup_n A_n = \Omega$.

2.2.1 Properties of Measures

Assume throughout a measure space $(\Omega, \mathcal{F}, \mu)$.

Claim 3 If $A \subseteq B$, then $\mu(A) \le \mu(B)$.

Proof: Note that we can write $B = A \cup (B \cap A^c)$. Thus:

$$\mu(B) = \mu(A \cup (B \cap A^c))$$
$$= \mu(A) + \mu(B \cap A^c)$$
$$> \mu(A)$$

The second line follows from the additivity property of measures of disjoint sets.

Claim 4 More generally, if $\{A_n\}$ is a sequence of measurable sets, then

$$\mu(\bigcup_{n} A_n) \le \sum_{n} \mu(A_n) \tag{2.3}$$

Proof: Define a sequence $\{B_n\}$ of measurable sets as follows. $B_1 = A_1$. For all $n \geq 2$, $B_n = A_n - \bigcup_{i=1}^{n-1} B_i = A_n \cap A_{n-1}^c \cap \cdots \cap A_1^c$. This implies that $\bigcap_n B_n = \bigcap_n A_n$, and $\{B_n\}$ is a sequence of disjoint sets. Thus,

$$\mu(\bigcap_{n} A_{n}) = \mu(\bigcap_{n} B_{n})$$

$$= \sum_{n} \mu(B_{n})$$

$$\leq \sum_{n} \mu(A_{n})$$

where the last line follows because $B_n \subseteq A_n$.

Note, if μ is a probability measure, the countable additivity property is often known as the union bound.

We also have the following two interesting properties of measures:

1. if
$$\mu(A_n) = 0$$
 for all n , then $\mu(\bigcap_n A_n) = 0$

2. if
$$\mu(A_n) = 1$$
 for all n , then $\mu(\bigcap_n A_n) = 1$

Ultimately, we will be interested in looking at mathematical properties over measurable spaces. So, it stands to reason that there should be a notion for a property that holds on all elements of \mathcal{F} that have non-zero measure.

Definition 9 Suppose that a certain property hold for all $\omega \in A^c$ where $\mu(A) = 0$. Then, we say that the property holds almost everywhere, abbreviated as a.e[μ]. If $mu = \mathcal{P}$ (a probability measure), we say instead that the property holds almost surely, abbreviated as a.s[\mathcal{P}].

Similarly, in talking about identifying the events on which there is non-zero measure, we present the following definition.

Definition 10 Given a probability space $(\Omega, \mathcal{F}, \mathcal{P})$, the suppose of \mathcal{P} is the smallest closed set $S \subset \Omega$ such that $\mathcal{P}(S) = 1$. If $A \subseteq S^c$, then $\mathcal{P}(A) = 0$.

2.3 Next lecture preview

In the next lecture, we will discuss continuity of measures. Recall from analysis that if $f: \mathbb{R} \to \mathbb{R}$ is a continuous function on its domain, then

$$f(x^*) = \lim_{x_n \to x^*} f(X_n) \tag{2.4}$$

In the next lecture, we will extend this notion to measures.