36-710: Advanced Statistical Theory

Fall 2018

Lecture 10: October 3

Lecturer: Alessandro Rinaldo Scribes: Riccardo Fogliato

Note: LaTeX template courtesy of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

10.1 From previous lecture

Theorem 10.1 Let $(X_1, \ldots, X_n) \stackrel{iid}{\sim} SG_d(\sigma^2)$, and $cov(X_i) = \Sigma \ \forall i = 1, \ldots, n$. Then there exists some constant C > 0 such that

$$\mathbb{P}\left(\left\|\hat{\Sigma} - \Sigma\right\|_{op} \ge C \max\left\{\sqrt{\frac{d + \log\frac{1}{\delta}}{n}}, \frac{d + \log\frac{1}{\delta}}{n}\right\}\right) \le 1 - \delta.$$

Proof: Let $\{v_1, \ldots, v_n\} \in \mathbb{S}^{d-1}$ be a minimal $\frac{1}{4}$ covering of \mathbb{S}^{d-1} . Then, letting $t \geq 0$, we obtain

$$\mathbb{P}(\|A\|_{op} \ge t) \le \mathbb{P}(\max_{j} |v_{j}^{T} A v_{j}| \ge t/2) \le \sum_{j=1}^{n} \mathbb{P}(|v_{j}^{T} A v_{j}| \ge t/2).$$

Next, for any $v \in \mathbb{S}^{d-1}$,

$$v^T A v = v^T (\hat{\Sigma_n} - \Sigma) v = v = v^T \left(\sum_{i=1}^n \frac{X_i X_i^T}{n} - \Sigma \right) v = \frac{1}{n} \sum_{i=1}^n \left(Z_i^2 - \mathbb{E}[Z_i^2] \right).$$

For each $j = 1, \ldots, n$,

$$\mathbb{P}(|v_j^T A v_j| \ge t/2) \le 2 \exp\left\{-\frac{n}{2} \min\left\{\left(\frac{t}{22\sigma^2}\right)^2, \frac{t}{22\sigma^2}\right\}\right\}$$

therefore

$$\mathbb{P}\left(\|A\|_{op} \ge t\sigma^2\right) \le 2 \cdot 9^d \exp\left\{-\frac{n}{2} \min\left\{\left(\frac{t}{22\sigma^2}\right)^2, \frac{t}{22\sigma^2}\right\}\right\}$$

for the RHS smaller than $\delta \in (0,1)$, we obtain

$$\frac{t}{22} \ge \max\left\{\frac{2d\log 9}{n} + \frac{2}{n}\log\left(\frac{2}{\delta}\right), \sqrt{\frac{2d\log 9}{n} + \frac{2}{n}\log\left(\frac{1}{\delta}\right)}\right\}$$

10-2 Lecture 10: October 3

Quick extension

Assume $X_i = \Sigma^{\frac{1}{2}} Z_i$ where Z_i is positive definite (PD), $Z_i \in SG_d(1)$, and $V(Z_i) = I_d$; then $X_i \in SG_d(\|\Sigma\|_{op})$. Therefore

$$\left\| \sum_{i=1}^{n} \frac{X_i X_i^T}{n} - \Sigma \right\|_{op} = \left\| \Sigma^{\frac{1}{2}} \left(\sum_{i=1}^{n} \frac{Z_i Z_i^T}{n} - I_d \right) \Sigma^{\frac{1}{2}} \right\|_{op} \le \left\| \sum_{i=1}^{n} \frac{Z_i Z_i^T}{n} - I_d \right\|_{op} \left\| \Sigma^{\frac{1}{2}} \right\|_{op}^{2}.$$

Now the rate for $\|\hat{\Sigma}_n - \Sigma\|_{op}$ depends on $\|\Sigma\|_{op}$ instead of σ^2 .

10.2 Matrix concentration inequalities

Theorem 10.2 (matrix Bernstein inequality) Let X_1, \ldots, X_n be mean-zero, independent, symmetric $d \times d$ random matrices such that $||X_i||_{op} \leq C$ a.e. for some C > 0. Then, $\forall t \geq 0$,

$$\mathbb{P}\left(\left\|\sum_{i=1}^{n} X_{i}\right\|_{op} \ge t\right) \le 2d \exp\left\{-\frac{t^{2}}{2(\sigma^{2} + ct/3)}\right\}$$

where $\sigma^2 = \left\| \sum_{i=1}^n \mathbb{E}[X_i^2] \right\|_{op}$.

Notice that for d=1 we recover the usual Bernstein's inequality.

Matrix Bernstein inequality has many applications: randomised algorithms for fast SVD, sparsification and matrix subsampling, dimensionality reduction, combinatorial optimization.

Warm-up

Let A be a $d \times d$ symmetric matrix, and consider its SVD form $A = U\Lambda U^T = \sum_{i=1}^n \lambda_i U_i U_i^T$. A few facts:

- if A is positive semi-definite (PDS), then $\lambda_j \geq 0, \ \forall j = 1, \ldots, d;$
- letting S^+ be the cone of PSD matrices, if $A \in S^+$, then $\alpha A \in S^+ \ \forall \alpha \geq 0$;
- if B-A is PDS, then the PSD order is expressed as $A \leq B$;
- let $f: \mathbb{R} \to \mathbb{R}$, then $f(A) = Uf(\Lambda)U^T = \sum_{i=1}^d f(\lambda_i)u_iu_i^T$.

Remember that for two matrices A and B, $A \leq B$ implies $\lambda_{A,i} \leq \lambda_{B,i} \ \forall i=1,\ldots,d$ only if they share the same eigenvectors. For instance, $A \leq I_d \iff U\Lambda U^T \leq UU^T$.

Examples:

- exponential: $\exp(A) = I + \sum_{i=1}^{\infty} \frac{A^i}{i!}$, which follows from the definition of function on a marix;
- exponential-logarithm: $\log(\exp(A)) = A$, ie logarithm is the inverse function of exponential. However, $\exp(\log(A)) = A$ only if $A \in S^+$;
- trace: $tr(A) = \sum_{i=1}^d A_i = \sum_{i=1}^d \lambda_i$;

Lecture 10: October 3 10-3

- transfer function property: $f, g: I \to \mathbb{R}$ s.t. $f(x) \leq g(x) \ \forall x \in I$; then $f(A) \leq g(A)$;
- trace-exponential inequality: if $A \leq B$, then $tr(\exp(A)) \leq tr(\exp(B))$;
- logarithm is operator concave: if $0 \prec A \leq B$, then $\log(A) \leq \log(B)$.

Notice that $\exp(A+B) \neq \exp(A) \exp(B)$ if $AB \neq BA$.

Proof: Step I: bounding the MGF

For the symmetric $d \times d$ matrix A, $||A||_{op} = \max\{\lambda_{\max}(A), \lambda_{\min}(A)\} = \max\{\lambda_{\max}(A), \lambda_{\max}(-A)\}$. Therefore it will be enough to bound λ_{\max} . Set $S = \sum_{i=1}^{n} X_i$. Then, for $t \in \mathbb{R}$,

$$\mathbb{P}(\lambda_{\max}(S) \ge t) \le e^{-\lambda t} \mathbb{E}[e^{\lambda - \lambda_{\max}(S)}]$$

$$= e^{-\lambda t} \mathbb{E}[\lambda_{\max}(\exp{\{\lambda S\}})]$$

$$\le e^{-\lambda t} \mathbb{E}[tr(\exp{\{\lambda S\}})]$$

$$= e^{-\lambda t} \mathbb{E}[tr(\exp{\{\lambda \sum_{i=1}^{n} X_i\}})]$$

Step II: Lieb's inequality

An useful fact: let B be symmetric; the function $A^+ \to tr(\exp\{B + \log(A)\})$ is concave on S^+ . Therefore, letting $Y = \exp\{X\} \in S^+$, it follows that $\mathbb{E}[tr(\exp\{B + \log Y\})] \le tr(\exp\{B + \log \mathbb{E}Y\})$ by Jensen. Back to the proof: we obtain

$$\mathbb{E}[tr(\exp\{\lambda \sum_{i=1}^{n} X_i\})] = \mathbb{E}[tr(\exp\{\lambda \sum_{i=1}^{n-1} X_i + \lambda X_n\})]$$

$$= \mathbb{E}_{X_1,\dots,X_{n-1}}[\mathbb{E}_{X_n}[tr(\exp\{\lambda \sum_{i=1}^{n-1} X_i + \lambda X_n\})|X_n]]$$

$$\leq \mathbb{E}[tr(\exp\{\sum_{i=1}^{n-1} \lambda X_i + \log(\mathbb{E}_{X_n}[\exp\{\lambda X_n\}])\}]$$

$$\leq \dots$$

$$\leq e^{-\lambda t}tr(\exp\{\sum_{i=1}^{n} \log(\mathbb{E}[\exp\{\lambda X_i\}])\}.$$

Such a result is what Tropp calls the master tail bound tail bound:

$$\mathbb{P}(\lambda_{\max}(\sum_{i=1}^n X_i \ge t) \le \inf_{\lambda > 0} \left\{ e^{-\lambda t} tr\left(\exp\left\{\sum_{i=1}^n \log(\mathbb{E}[e^{\lambda X_i}]\right\}\right)\right\}.$$