36-710: Advanced Statistical Theory

Fall 2018

Lecture 11: October 8

Lecturer: Alessandro Rinaldo Scribes: Yue Li

Note: LaTeX template courtesy of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

11.1 Matrix Bernstein Theorem

Last time we came to half way of proof of matrix Bernstein theorem; we first complete the proof.

Theorem 11.1 (Matrix Bernstein Theorem) Let X_1, \ldots, X_n be mean-zero, independent $d \times d$ symmetric matrices, s.t. $||X_i||_{op} \leq C$, a.e., $\forall i$. Then $\forall t \geq 0$, we have

$$\mathbb{P}\left(\|\sum_{i=1}^{n} X_i\| \ge t\right) \le 2d \exp\left\{-\frac{t^2}{2(\sigma^2 + Ct/3)}\right\},\,$$

where $\sigma^2 = \|\sum_{i=1}^n \mathbb{E}\left[X_i^2\right]\|_{op} = \|\sum_{i=1}^n Var(X_i)\|_{op}$. As a result,

$$\mathbb{P}\left(\lambda_{\max}\left(\sum_{i=1}^{n} X_i\right) \ge t\right) \le \inf_{\lambda > 0} \left\{e^{-\lambda t}t\right\}.$$

Proof: In last lecture we completed the first two steps. We know

$$\mathbb{P}\left(\lambda_{\max}(\sum_{i=1}^{n} X_i) \ge t\right) \le e^{-\lambda t} tr \exp\left\{\sum_{i=1}^{n} \log\left(\mathbb{E}\left[\exp(\lambda X_i)\right]\right)\right\}.$$

Step 3: We handle term $\mathbb{E}\left[\exp(\lambda X_i)\right]$.

We will assume that $\mathbb{E}\left[\exp(\lambda X_i)\right] \leq \exp\left\{g(\lambda)A_i\right\}$ for some A_i and function g. We first prove the following lemma:

Lemma 11.2 Let $g:(0,\infty)\mapsto [0,\infty)$ and A_1,\ldots,A_n be $d\times d$ symmetric PSD matrices such that

$$\mathbb{E}\left[\exp(\lambda X_i)\right] \leq \exp(g(\lambda)A_i), \forall \lambda > 0.$$

Then it holds that

$$\mathbb{P}\left(\lambda_{\max}(\sum_{i=1}^{n} X_i) \ge t\right) \le d \inf_{\lambda > 0} \exp\left\{-\lambda t + g(\lambda)\sigma^2\right\},\,$$

where $\sigma^2 = \lambda_{\max}(\sum_{i=1}^n A_i)$.

11-2 Lecture 11: October 8

Proof: By the proof of Step 1 and Step 2, we know

$$\mathbb{P}\left(\lambda_{\max}(\sum_{i=1}^{n} X_i) \ge t\right) \le e^{-\lambda t} tr \exp\left\{\sum_{i=1}^{n} \log\left(\mathbb{E}\left[\exp(\lambda X_i)\right]\right)\right\}.$$

Recall two properties of matrix-valued functions:

Proposition 11.3 1) operator monotonicity of matrix logarithm function: $0 \prec A \leq B \Rightarrow \log(A) \leq \log(B)$; 2) monotonicity of $tr \exp(\cdot)$ function: $A \leq B \Rightarrow tr \exp(A) \leq tr \exp(B)$.

By 1) and $\mathbb{E}[\exp(\lambda X_i)] \leq \exp(g(\lambda)A_i)$, we have $\log \mathbb{E}[\exp(\lambda X_i)] \leq \log \exp(g(\lambda)A_i)$. So $\sum_{i=1}^n \log \mathbb{E}[\exp(\lambda X_i)] \leq \sum_{i=1}^n g(\lambda)A_i$. By 2), we have

$$tr \exp\left\{\sum_{i=1}^n \log \mathbb{E}\left[\exp(\lambda X_i)\right]\right\} \le tr \exp\left\{\sum_{i=1}^n g(\lambda)A_i\right\},$$

$$\mathbb{P}\left(\lambda_{\max}(\sum_{i=1}^n X_i) \ge t\right) \le e^{-\lambda t}tr \exp\left\{\sum_{i=1}^n \log \left(\mathbb{E}\left[\exp(\lambda X_i)\right]\right)\right\} \le e^{-\lambda t}tr \exp\left\{g(\lambda)\sum_{i=1}^n A_i\right\}$$

$$(By\sum_{i=1}^n A_i \le \sigma^2 I) \le e^{-\lambda t}tr \exp\left\{g(\lambda)\sigma^2 I\right\} = d \exp\left\{-\lambda t + g(\lambda)\sigma^2\right\}.$$

Since λ can take any values in \mathbb{R}^+ , we complete the proof of Lemma 11.2.

Now go back to original proof. Again we assume $\mathbb{E}\left[\exp(\lambda X_i)\right] \leq \exp\left\{g(\lambda)A_i\right\}$.

Step 4: We prove Bernstein inequality in this step. We need the auxiliary result:

Lemma 11.4 Let $X \in \mathbb{R}^{d \times d}$ be symmetric mean-zero, such that $\lambda_{\max}(X) \leq 1$, a.e. Then

$$\mathbb{E}\left[\exp(\lambda X)\right] \leq \exp\left\{(e^{\lambda} - \lambda - 1)\mathbb{E}\left[X^2\right]\right\}.$$

Proof: The function

$$f: X \in \mathbb{R} \mapsto \begin{cases} \frac{e^{\lambda x} - \lambda x - 1}{x^2}, & x \neq 0; \\ \frac{\lambda^2}{2}, & x = 0 \end{cases}$$

is increasing in x. So that $f(x) \leq f(1)$ is $x \geq 1$. By transfer rule, $f(X) \leq f(1)I_d$.

Next,

$$\exp(\lambda X) = I_d + \lambda X + \exp(\lambda X) - \lambda X - I_d = I_d + \lambda X + X f(X) X$$

$$\leq I_d + \lambda X + X f(1) I_d X = I_d + \lambda X + f(1) X^2.$$

Taking expectation,

$$\mathbb{E}\left[e^{\lambda X}\right] \leq I_d + \mathbb{E}\left[\lambda X\right] + f(1)\mathbb{E}\left[X^2\right] = I_d + f(1)\mathbb{E}\left[X^2\right].$$

Thus we complete the proof.

We can see $\lambda_{\max}(X_i/C) \leq 1$. Applying Lemma 11.4., for $g(\lambda) = e^{\lambda} - \lambda - 1$,

$$\mathbb{E}\left[\exp(\lambda X_i/C)\right] \leq \exp\left\{g(\lambda)\mathbb{E}\left[X_i^2\right]/C^2\right\}.$$

By Lemma 11.2,

$$\mathbb{P}\left(\lambda_{\max}(\sum_{i=1}^{n} X_i) \ge Ct\right) \le d \exp\left\{-\lambda t + \frac{g(\lambda)}{C^2}\sigma^2\right\}.$$

Lecture 11: October 8 11-3

$$\mathbb{P}\left(\lambda_{\max}(\sum_{i=1}^{n} X_i) \ge t\right) \le d \exp\left\{-\frac{\lambda}{C}t + \frac{g(\lambda)}{C^2}\sigma^2\right\}.$$

Minimizing over $\lambda > 0$, minimum happens at $\lambda = \log(1 + Ct/\sigma^2)$, $t \ge 0$. Plug this in, we get

$$\mathbb{P}\left(\lambda_{\max}(\sum_{i=1}^{n} X_i) \ge t\right) \le d \exp\left\{-\frac{\sigma^2}{C^2} h(\frac{Ct}{\sigma^2})\right\},\,$$

where $h(\mu) = (1 + \mu) \log(1 + \mu) - \mu$ for $\mu > 0$. We know $h(\mu) \ge \frac{\mu^2}{2(1 + \mu/3)}$, and thus

$$\mathbb{P}\left(\lambda_{\max}(\sum_{i=1}^n X_i) \ge t\right) \le d \exp\left\{-\frac{t^2}{2(\sigma^2 + Ct/3)}\right\} \begin{cases} \le d \exp\left\{-\frac{3t^2}{8\sigma^2}\right\}, & t \le \sigma^2/C; \\ \le d \exp\left\{-\frac{3t}{8C}\right\}, & t > \sigma^2/C. \end{cases}$$

11.2 Matrix Hoeffding Bound

Theorem 11.5 (Matrix Hoeffding Bound) Let X_1, \ldots, X_n be independent $d \times d$ symmetric mean-zero matrices, s.t. $X_i^2 \leq A_i^2$ for all i and some positive-definite matrices A_1, A_2, \ldots, A_n . Then

$$\mathbb{P}\left(\|\sum_{i=1}^{n} X_i\|_{op} \ge t\right) \le 2d \exp\left\{-\frac{t^2}{8\sigma^2}\right\}, \forall t \ge 0,$$

where $\sigma^2 = \|\sum_{i=1}^n A_i^2\|_{op}$.

Define $X \in \mathbb{R}^{d \times d}$ mean-zero symmetric random matrix to be

1. sub-Gaussian with parameters $\Sigma \in \mathbb{R}^{d \times d}$ positive definite if

$$\mathbb{E}\left[\exp(\lambda X)\right] \preceq \exp\left\{\frac{\lambda^2}{2}\Sigma\right\}, \forall \lambda \in \mathbb{R}.$$

2. sub-exponential with parameters (N, α) , $N \in \mathbb{R}^{d \times d}$ positive definite, $\alpha > 0$ if

$$\mathbb{E}\left[\exp(\lambda X)\right] \le \exp\left\{\frac{\lambda^2}{2}N\right\}, \forall |\lambda| < 1/\alpha.$$

(There are other ways to generalize sub-Gaussian and sub-exponential random variables. For example, a mean-zero $d \times d$ matrix is sub-Gaussian(σ^2) if $\langle A, V \rangle \in SG(\sigma^2)$ for all V with $||V||_F = 1$. This is a weaker condition. Here we define $\langle A, B \rangle = tr(A^TB)$, and then $||A||_F^2 = \langle A, A \rangle$.)

Remarks:

- 1. If $\operatorname{rank}(\sum_{i=1}^n \mathbb{E}\left[X_i^2\right]) = r \leq d$. Then we can replace d by r;
- 2. Extension to non-symmetric matrices: $B \in \mathbb{R}^{d_1 \times d_2}$ or $B \in \mathbb{R}^{d \times d}$ non-symmetric. In this case, let $A = \begin{pmatrix} 0 & B \\ B^T & 0 \end{pmatrix} \in \mathbb{R}^{(d_1 + d_2) \times (d_1 + d_2)}$, then $A^2 = \begin{pmatrix} BB^T & 0 \\ 0 & B^TB \end{pmatrix}$, and $\|A\|_{op} = \|B\|_{op}$. Applying matrix Bernstein inequality, with $\sigma^2 = \max \left\{ \|\sum_{i=1}^n \mathbb{E}\left[X_i X_i^T\right]\|_{op}, \|\sum_{i=1}^n \mathbb{E}\left[X_i^T X_i\right]\|_{op} \right\}$, and replace d by $(d_1 + d_2)$;
- 3. When d is not too large, this bound can be sharp. When d is too large, the bound is loose. There are results in which d is replaced by $d_{INT}(\sum_{i=1}^n \mathbb{E}\left[X_i^2\right])$, where $1 \leq d_{INT}(A) \leq \frac{tr(A)}{\lambda_{\max}(A)} \leq d$ for positive definite A.

11-4 Lecture 11: October 8

11.3 Application to Covariance Matrices

Proposition 11.6 Let X_1, \ldots, X_n be independent mean-zero random vectors in \mathbb{R}^d s.t. $||X_i|| \leq \sqrt{C}$, $\forall i$, a.e.; then

$$\mathbb{P}\left(\|\hat{\Sigma}_n - \Sigma\|_{op} \ge t\right) \le 2d \exp\left\{-\frac{nt^2}{2C(\|\Sigma\|_{op} + t/3)}\right\}.$$

Proof: Let $Q_i = X_i X_i^T - \Sigma$, then $\hat{\Sigma}_n - \Sigma = \frac{1}{n} \sum_{i=1}^n Q_i$. We need to:

- 1. Check $||Q_i||_{op}$ are uniformly bounded;
- 2. Bound $\sigma^2 = \| \sum_{i=1}^n V[Q_i] \|_{op}$.

To deal with 1):

$$||Q_i||_{op} = ||X_i X_i^T - \Sigma||_{op} \le ||X_i X_i^T||_{op} + ||\Sigma||_{op} = ||X_i||^2 + ||\Sigma||_{op} \le 2C,$$

because

$$\begin{split} \|\Sigma\|_{op} &= \lambda_{\max}(\Sigma) = \max_{z \in \mathbb{S}^{d-1}} z^T \Sigma z \\ &= \max_{z \in \mathbb{S}^{d-1}} z^T \mathbb{E} \left[X X^T \right] z = \max_{z \in \mathbb{S}^{d-1}} \mathbb{E} \left[(X^T z) \right]^2 \\ &\leq \max_{z \in \mathbb{S}^{d-1}} \mathbb{E} \left[\|X\|^2 \|z\|^2 \right] \leq C. \end{split}$$

As for 2),

$$\begin{split} V\left[Q_{i}\right] = & \mathbb{E}\left[(X_{i}X_{i}^{T})^{2}\right] - \Sigma^{2} \\ \leq & \mathbb{E}\left[(X_{i}X_{i}^{T})^{2}\right] = \mathbb{E}\left[\|X_{i}\|^{2}X_{i}X_{i}^{T}\right] \\ \leq & C\mathbb{E}\left[X_{i}X_{i}^{T}\right] = C\Sigma. \end{split}$$

Then $||V[Q_i]||_{op} \leq C||\Sigma||_{op}$.

For a simple application, since $||X_i|| \le K\sqrt{\mathbb{E}[||X_i||^2]} = Ktr(\Sigma)$, we can always take $C = K\sqrt{d||\Sigma||_{op}}$. Then it can be shown that with high probability,

$$\frac{\|\hat{\Sigma}_n - \Sigma\|_{op}}{\|\Sigma\|_{op}} \le const \max \left\{ \sqrt{\frac{d}{n} \log d}, \frac{d}{n} \log d \right\}.$$