36-752 Advanced Statistical Theory

Fall 2018

Lecture 6: Sept 19

Lecturer: Alessandro Rinaldo Scribes: Wanshan Li

Note: LaTeX template courtesy of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

6.1 Maximal Inequality

Suppose we have X_1, \dots, X_n with $\mathbb{E}X_i = 0$ and $X_i \in SG(\sigma^2)$ for all i. Notice that here X_i 's are not necessarily independent! Another thing to keep in mind is that if $X \in SG(\sigma^2)$ and $\tau^2 > \sigma^2$, then $X_i \in SG(\tau^2)$.

It is easy to bound

$$\mathbb{P}(\max_{i} X_{i} \geq t) \text{ or } \mathbb{P}(\max_{i} |X_{i}| \geq t).$$

We can simply use the union bound!

$$\mathbb{P}(\max_{i}|X_{i}| \ge t) \le \sum_{i=1}^{n} \mathbb{P}(|X_{i}| \ge t) \le 2n \exp\left(-\frac{t^{2}}{2\sigma^{2}}\right),$$

and to get a high probability bound, we can take $t = \sqrt{2\sigma^2 \log n}$. In the case of Gaussian variables, this maximal inequality is fairly tight, even in constant.

In HW1, we considered

$$\mathbb{P}(\|\hat{\Sigma}_n - \Sigma_n\|_{\infty} \ge t) \le \sum_{1 \le i \le j \le n} \mathbb{P}(|\hat{\Sigma}_n(i,j) - \Sigma_n(i,j)| \ge t),$$

where there are $d \cdot d/2 = O(d^2)$ terms in the summation.

So far we have upper bounds for $\mathbb{P}(\max_i X_i \geq t)$, and the following theorem provides an upper bound for $\mathbb{E}[\max_i X_i]$.

Theorem 6.1. Let X_1, \dots, X_n be random variables such that

$$\log \mathbb{E}\left[e^{\lambda X_i}\right] \leq \psi(\lambda), \ \forall \lambda \in [0,b), \ 0 < b < \infty,$$

with $\psi(\cdot)$ convex on [0,b). Then

$$\mathbb{E}[\max_{i} X_{i}] \leq \inf_{\lambda \in [0,b)} \left\{ \frac{\log n + \psi(\lambda)}{\lambda} \right\}.$$

6-2 Lecture 6: Sept 19

Proof. Suppose $\lambda \in (0, b)$, we have

$$\exp\left\{\lambda \mathbb{E}[\max X_i]\right\} \qquad \qquad [\text{By Jensen's inequality}]$$

$$\leq \mathbb{E}\left\{\exp[\lambda \max X_i]\right\} = \mathbb{E}\left\{\max \exp[\lambda X_i]\right\} \qquad [\text{Monotonicity}]$$

$$\leq \sum_{i=1}^n \mathbb{E}\left[\exp(\lambda X_i)\right]$$

$$\leq n \exp(\psi(\lambda)) \qquad \qquad [\text{Assumption}].$$

Taking log on both sides and dividing by $\lambda > 0$ complete the proof.

Example 6.2. Suppose $X_1, \dots, X_n \in SG(\sigma^2)$, then $\log \mathbb{E}\left[e^{\lambda X_i}\right] \leq \psi(\lambda)$ for $\psi(\lambda) = \frac{\lambda^2 \sigma^2}{2}$. By Theorem 6.1

$$\mathbb{E}\left[\max_{1\leq i\leq n} X_i\right] \leq \inf_{\lambda>0} \left\{\frac{\log(n) + \frac{\lambda^2\sigma^2}{2}}{\lambda}\right\}$$

$$\leq \frac{\log(n) + \frac{2\log(n)}{\sigma^2} \frac{\sigma^2}{2}}{\sqrt{\frac{2\log(n)}{\sigma^2}}}$$

$$= \frac{2\log(n)}{\sqrt{\frac{2\log(n)}{\sigma^2}}}$$

$$= \sqrt{2\sigma^2\log(n)}.$$
[Set optimal value $\lambda = \sqrt{\frac{2\log(n)}{\sigma^2}}$]
$$= \sqrt{2\sigma^2\log(n)}.$$

Briefly, $\mathbb{E}\left[\max_{1\leq i\leq n} X_i\right]$ grows on the order of $\sqrt{\log(n)}$.

The following result, Lemma 2.1 in [Ma07], provides an approach to compute $\inf_{\lambda \in [0,b)} \left\{ \frac{\log n + \psi(\lambda)}{\lambda} \right\}$.

Proposition 6.3. If ψ is convex and differentiable on [0,b) with $\psi(0) = \psi'(0) = 0$, which is true if ψ is the logarithm of MGF of a centered RV, then $\forall \mu > 0$,

$$\inf_{\lambda \in [0,b)} \left[\frac{\mu + \psi(\lambda)}{\lambda} \right] = \inf\{t \ge 0 : \psi^*(t) \ge \mu\},$$

where

$$\psi^*(t) \equiv \sup_{\lambda \in [0,b)} \{\lambda t - \psi(\lambda)\}.$$

Note The expression $\psi^{*-1}(\mu) := \inf\{t \ge 0 : \psi^*(t) \ge \mu\}$ is called the generalized inversion of ψ^* . For more details, including how to compute $\psi^{*-1}(\mu)$, see [M07] or [BLM13].

Example 6.4. If $\psi(\lambda) = \frac{\lambda^2 \nu^2}{2(1-\lambda b)}$, $\lambda \in [0, 1/b)$, then $\psi^{*-1}(\mu) = \sqrt{2\nu^2 \mu} + b\mu$ for $\mu > 0$, thus

$$\mathbb{E}[\max_{i} X_i] \le \sqrt{2\nu^2 \log n} + b \log n.$$

Specifically, if $X_i \sim \chi_p^2$, then

$$\mathbb{E}[\max(X_i - p)] \le 2\sqrt{p\log n} + 2\log n.$$

Lecture 6: Sept 19 6-3

6.2 Bounded Difference Inequality

So far we have considered concentration inequalities for $\sum_{i=1}^{n} X_i$. Suppose now we are interested in $Z = f(X_1, \dots, X_n)$ here X_1, \dots, X_n are independent.

Set $Z_0 = \mathbb{E}\left[f(X_1, \cdots, X_n)\right],$

$$Z_k = \mathbb{E}[f(X_1, \dots, X_n)|X_1, \dots, X_k], \ k = 1, \dots, n-1,$$

and $Z_n = f(X_1, \dots, X_n)$. Then we have

$$f(X_1, \dots, X_n) - \mathbb{E}[f(X_1, \dots, X_n)] = Z_n - Z_0 = \sum_{k=1}^n (Z_k - Z_{k-1}) = \sum_{k=1}^n D_k.$$

 D_k 's are called increments. Before we attack this problem, let's introduce some important tools related to martingales.

Definition 6.5 (Martingale). Let $\mathcal{F}_0 = \{\emptyset, \Omega\} \subseteq \mathcal{F}_1 \subseteq \cdots \subseteq \mathcal{F}_n \subseteq \cdots$ be a filtration. A sequence of random variables $\{Z_k\}_{k=1,2,...}$ is a martingale if

- 1. Z_k is \mathcal{F}_k measurable;
- 2. $\mathbb{E}[Z_k|\mathcal{F}_{k-1}] = Z_{k-1}$, for $k \ge 2$;
- 3. $\mathbb{E}|Z_k| < \infty$, for all k.

Example 6.6 (Doob construction). Consider $Z = f(X_1, \dots, X_n)$ such that Z is integrable or $\mathbb{E}|Z| < \infty$, and $\mathcal{F}_k = \sigma(X_1, \dots, X_k)$. Let $Z_k = \mathbb{E}[Z|\mathcal{F}_k]$, then $\{Z_k\}$ is a martingale.

Example 6.7 (Martingale Difference). If $(Z_k, \mathcal{F}_k)_{k=0,1,\dots}$ is a martingale, then the sequence of increments

$$D_k = Z_k - Z_{k-1}$$

gives a new martingale such that $\mathbb{E}[D_k] = 0$ for all $k \geq 1$. We call $\{D_k\}_{k=1,\dots}$ a martingale difference.

Theorem 6.8. Let $\{(D_k, \mathcal{F}_k), k = 1, 2, \dots, \}$ be a martingale difference s.t.

$$\mathbb{E}\left[e^{\lambda D_k}|\mathcal{F}_{k-1}\right] \le e^{\lambda^2 \nu_k^2/2}, \ \forall |\lambda| \le \frac{1}{\alpha_k},\tag{6.1}$$

almost surely. Then

1) $\sum_{k=1}^{n} D_k \in SE(\sum_k \nu_k^2, \max_k \alpha_k);$

2)

$$\mathbb{P}(|\sum_{k} D_{k}| \ge t) \le \begin{cases} 2 \exp\left\{-\frac{t^{2}}{2\sum_{k} \nu_{k}^{2}}\right\}, \ t \le \frac{\sum_{k} \nu_{k}^{2}}{\max_{k} \alpha_{k}}, \\ 2 \exp\left\{-\frac{t}{2\max_{k} \alpha_{k}}\right\}, \ t > \frac{\sum_{k} \nu_{k}^{2}}{\max_{k} \alpha_{k}}. \end{cases}$$

6-4 Lecture 6: Sept 19

Proof. 1). By the iterated law of expectation

$$\mathbb{E}\left[e^{\lambda \sum_{k=1}^{n} D_{k}}\right] = \mathbb{E}\left[\mathbb{E}\left[e^{\lambda \sum_{k=1}^{n} D_{k}} | \mathcal{F}_{n-1}\right]\right]$$

$$= \mathbb{E}\left[\exp\left\{\lambda \sum_{k=1}^{n-1} D_{k}\right\} \mathbb{E}\left[e^{\lambda D_{n}} | \mathcal{F}_{n-1}\right]\right]$$

$$\leq \mathbb{E}\left[\exp\left\{\lambda \sum_{k=1}^{n-1} D_{k}\right\} e^{\lambda^{2} \nu_{n}^{2} / 2}\right]$$

$$= e^{\lambda^{2} \nu_{n}^{2} / 2} \mathbb{E}\left[e^{\lambda \sum_{k=1}^{n-1} D_{k}}\right], \text{ for } |\lambda| < \frac{1}{\alpha_{n}},$$

where we use the fact that $\exp\{\lambda \sum_{k=1}^{n-1} D_k\} \in \mathcal{F}_{n-1}$ and (6.1). Repeating the same procedure for $k = n-1, \dots, 2$, we can get

$$\mathbb{E}\left[e^{\lambda \sum_{k=1}^{n} D_k}\right] \le e^{\lambda^2 \frac{\sum_{k=1}^{n} \nu_k^2}{2}}, \text{ for } |\lambda| < \frac{1}{\max_k \alpha_k}.$$

2) Use the property of sub-exponential random variables and 1).

Corollary 6.9 (Azuma's Inequality or Azuma-Hoeffding Inequality). Suppose $\{D_k\}_{k=1,2...}$ is a martingale difference. If $D_k \in (a_k, b_k)$ almost surely for some $a_k < b_k$, then

$$\left| \mathbb{P}\left(\left| \sum_{k=1}^{n} D_k \right| \ge t \right) \le 2 \exp\left\{ -\frac{2t^2}{\sum_k (b_k - a_k)^2} \right\}.$$

Proof. $D_k \in (a_k, b_k)$ almost surely implies that for almost all $\omega \in \Omega$, the conditional variable $(D_k | \mathcal{F}_{k-1})(\omega) \in (a_k, b_k)$ almost surely, where $(D_k | \mathcal{F}_{k-1})(\omega)$ is defined using regular conditional distributions. By the Hoeffding's bound, $(D_k | \mathcal{F}_{k-1})(\omega)$ is sub-Gaussian with parameter $\sigma^2 = (b_k - a_k)^2/4$, for almost all ω . Therefore by the definition of sub-Gaussian r.v. we have that for almost all ω ,

$$\mathbb{E}\left[\exp\{\lambda(D_k|\mathcal{F}_{k-1})(\omega)\}\right] \le \exp\left\{\lambda^2 \frac{(b_k - a_k)^2}{8}\right\}.$$

By the property of regular conditional distributions (e.g., see [Du2013]),

$$\mathbb{E}\left[e^{\lambda D_k}|\mathcal{F}_{k-1}\right](\omega) = \mathbb{E}\left[\exp\{\lambda(D_k|\mathcal{F}_{k-1})(\omega)\}\right], \text{almost surely.}$$

Therefore

$$\mathbb{E}\left[e^{\lambda D_k}|\mathcal{F}_{k-1}\right] \le \exp\left\{\lambda^2 \frac{(b_k - a_k)^2}{8}\right\}, \text{almost surely}.$$

Now let $\nu_k^2 = (b_k - a_k)^2/4$ and $\alpha_k = 0$ in Theorem 6.8 and we can prove the inequality.

Now we can go back to the original problem, the concentration of $Z = f(X_1, \dots, X_n)$, where X_1, \dots, X_n are independent. Briefly speaking, if f is "well behaved", then Z concentrates.

Definition 6.10 (Bounded Difference Property). A function $f: \mathbb{R}^n \to \mathbb{R}$ satisfies the Bounded Difference Property if $\exists L_1, \dots, L_n$ positive constants such that for all (x_1, \dots, x_n) in the domain of f and for all $k \in \{1, \dots, n\}$,

$$\sup_{x,y} |f(x_1,\dots,x_{k-1},x,x_{k+1},\dots,x_n) - f(x_1,\dots,x_{k-1},y,x_{k+1},\dots,x_n)| \le L_k.$$

This can be seen as a Lipschitz condition with respect to Hamming distance.

Lecture 6: Sept 19 6-5

Theorem 6.11 (McDiarmid's Inequality). Let X_1, \dots, X_n be independent random variables, $f : \mathbb{R}^n \to \mathbb{R}$ a function that satisfies the Bounded Difference Inequality, with constants L_1, \dots, L_n , and $Z = f(X_1, \dots, X_n)$. Then

 $\mathbb{P}(|Z - \mathbb{E}[Z]| \ge t) \le 2 \exp\left\{-\frac{2t^2}{\sum_{k=1}^n L_k^2}\right\}.$

Proof. Recall the Doob construction and let $D_0 = \mathbb{E}[Z] = \mathbb{E}[Z|\mathcal{F}_0]$, $D_k = \mathbb{E}[Z|\mathcal{F}_k]$, for $k = 1, \dots, n$, where $\mathcal{F}_k = \sigma(X_1, \dots, X_k)$ and $\mathcal{F}_0 = \{\emptyset, \Omega\}$, then $\{D_k\}_{k=1,2,\dots}$ is a martingale difference. Moreover, $\sum_{k=1}^n D_k = Z - \mathbb{E}[Z]$. Let

$$A_k = \inf_{x} \{ \mathbb{E}[Z|X_1, \dots, X_{k-1}, x] - \mathbb{E}[Z|X_1, \dots, X_{k-1}] \},$$

$$B_k = \sup_{x} \{ \mathbb{E}[Z|X_1, \dots, X_{k-1}, x] - \mathbb{E}[Z|X_1, \dots, X_{k-1}] \},$$

for $k = 1, \dots, n$. Then $D_k \in (A_k, B_k)$ almost surely for all k. By the Bounded Difference Property of f and the independence of X_1, \dots, X_n we can show that $B_k - A_k \leq L_k$ (see the notes for the next Lecture for details). Apply the Azuma's inequality to $\{D_k\}$ and the result follows.

References

[BLM13] S. Boucheron and G. Lugosi and P. Massart, Concentration Inequalities: a Nonasymptotic Theory of Independence, Oxford University Press, 20

[Du13] R. Durrett, "Probability: Theorey and Examples", Cambridge University Press, 197

[Ma07] D. Massart, Concentration inequalities and model selection, Springer Lecture Notes in Mathematics, vol 1605, 20