36-710: Advanced Statistical Theory

Fall 2018

Lecture 8: September 26

Lecturer: Alessandro Rinaldo Scribe: Ron Yurko

Note: LaTeX template courtesy of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

8.1 Maximal Inequalities

Let $\{X_i, i \in \mathcal{I}\}$ be a Stochastic Process. We want to obtain bounds for,

$$\mathbb{E}\left[\sup_{i\in\mathcal{I}}X_{i}\right],$$

$$\mathbb{P}\left(\sup_{i\in\mathcal{I}}X_{i}\geq t\right),\ t\geq0$$

You may want to replace X_i with $|X_i|$. If $|\mathcal{I}|$ is finite, union bound will typically work!

Last time: (\mathcal{X}, d) is a metric space, d is a distance.

Definition 8.1 (Covering) Let $\delta > 0$, a δ -cover of (\mathcal{X}, d) is a subset $\{\theta_1, \dots, \theta_N\} \subset \mathcal{X}$ such that $\forall \varkappa \in \mathcal{X} \exists \theta_i = \theta_i(x)$ such that $d(\varkappa, \theta_i) \leq \delta$.

The $\underline{\delta}$ -covering number of (\mathcal{X}, d) is the cardinality of a minimal δ -cover. It is denoted by $N(\delta, \varkappa, d)$. Think of it as the number of closed ball you can put around your space to cover it.

Remark

$$\mathcal{X} \subset \bigcup_{i=1}^{N} B(\theta_i, \delta) = \{ \varkappa \in \mathcal{X} : d(x, \theta_i) \leq \delta \}$$

We will only consider spaces that are <u>totally bounded</u>: $\forall \delta > 0, N(\delta, \varkappa, d) < \infty$ (in \mathbb{R}^d equivalent to \mathcal{X} being bounded).

<u>Remark</u> (δ, \varkappa, d) is decreasing in δ and as $\delta \to 0$, it will typically diverge.

Definition 8.2 $\delta \in \mathbb{R}_+ \to logN(\delta, \varkappa, d)$ is also known as metric entropy of (\varkappa, d) .

Examples: $\varkappa = [-1, 1], \ d(x, y) = |x - y|, \text{ then}$

$$N(\delta, \varkappa, d) \le \frac{1}{\delta} + 1,$$

$$\text{if } \varkappa = [-1,1]^p, \ d = ||\cdot||_\infty, \ N(\delta,\varkappa,d) \leq (\tfrac{1}{\delta}+1)^p.$$

In p-dimensional Euclidean spaces, the metric entropy is of the order $p\log(\frac{1}{\delta})$.

For infinite dimensional spaces, the metric entropy has a much worse dependence on δ , let $\mathcal{F} = \{f : [0,1]^p \to \mathbb{R}, L$ - Lipschitz $\}$ ($|f(x) - f(y)| \le \overline{L||x - y||}$.

$$\log N(\delta, \mathcal{F}, ||\cdot||_{\infty}) \simeq (\frac{\mathrm{L}}{\delta})^p$$

where $||f-g||_{\infty} = \sup_{x \in [0,1]^p} |f(x)-g(x)|$ and f(0) = 0. If \mathcal{F} consists of L-Lipschitz but also "smooth", where smoothness is controlled by $\alpha > 0$ ($\alpha \uparrow$ means smoother functions),

$$\log(\delta, \mathcal{F}, ||\cdot||_{\infty}) \asymp (\frac{L}{\delta})^{p/\alpha}$$

Definition 8.3 (Packing number) $\delta > 0$, a δ -packing of (\mathcal{X}, d) is a subset of $\{\theta_1, \dots, \theta_M\} \subset \mathcal{X}$ s.t. $d(\theta_i, \theta_j) > \delta \ \forall i \neq j \ notice \ that \ M = M(\delta)$. The δ -packing number of (\mathcal{X}, d) is the cardinality of a largest δ -packing

Lemma 8.4 $\forall \delta > 0$, $M(2\delta, \varkappa, d) \leq N(\delta, \varkappa, d) \leq M(\delta, \varkappa, d)$.

8.2 Covering of Euclidean Spaces

 $\mathcal{X} \subsetneq \mathbb{R}^d, \ d = ||\cdot||_p, \ p \ge 1.$

Lemma 8.5 Let $||\cdot||$ and $||\cdot||'$ be two norms in \mathbb{R}^d , let B and B' be corresponding unit balls $[B = \{ \in \mathbb{R}^d : ||x|| \le 1 \}]$. Aside: Let K be closed convex symmetric subset of \mathbb{R}^p , let $p_k(x) = \inf\{t > 0 : x \in tk\}$. Then $p_k(x)$ is a norm in \mathbb{R}^p !

Then

$$(\frac{1}{\delta})^p \frac{Vol(B)}{Vol(B')} \le N(\delta, B, ||\cdot||') \le \frac{Vol(\frac{2}{\delta} + B')}{Vol(B')}$$

 $\rightarrow Vol(B) =$ Lebesgue measure of B, where $B + B' = \{x + x' : x \in B, x' \in B'\}$ (Minkowski sum).

Proof. Use the fact that $Vol(\delta B) = \delta^d Vol(B)$. If $\{\theta_1, \dots, \theta_N\}$ is a δ -cover of B in $||\cdot||'$. Then $B \subset \bigcup_i^N (\theta_i + \delta B') \to \{x : ||x - \theta_i||' \le \delta\}$.

So,

$$Vol(B) \le \sum_{i}^{N} Vol(\theta_{i} + \delta B')$$

$$= N\delta^{p} Vol(B')$$

$$\Rightarrow N(\delta, B, ||\cdot||') \ge (1/\delta)^{p} \frac{Vol(B)}{Vol(B')}$$

To show upper bound, let $\theta_1, \ldots, \theta_M$ be a maximal δ -packing of B in $||\cdot||'$. Then $\{\theta_1, \ldots, \theta_m\}$ is also a δ -cover of B in $||\cdot||'$, [if not, $\in B$ s.t. $x + \delta B'$ would not contain any θ_i , then $\{\theta_1, \ldots, \theta_m, x\}$ would also be a δ -packing. Contradiction because is largest number of packing.]

The balls $\theta_i + \frac{\delta}{2}B'$ are disjoint $i=1,\ldots,M$ and $\bigcup_i^M(\theta_i + \delta/2B') \subset B + \delta/2B'$. Same proof gives, if $K \subseteq \mathbb{R}^p$,

$$\frac{Vol(K)}{\delta^{p}V_{p}} \le N(\delta, K, ||\cdot||_{2}) \le \frac{Vol(K + \delta/2B)}{(\delta/2)^{p}V_{p}}$$

Where V_p = volume of unit euclidean ball, $B_p = \{x : ||x||_2 \le 1\}$.

Corollary 8.6 *If* $|| \cdot || = || \cdot ||$,

- 1. $logN(\delta, B, ||\cdot||) \le plog(1 + 2/\delta) \le plog(3/\delta)$
- 2. If $K = S^{p-1} = \{x \in \mathbb{R}^p : ||x||_2 = 1\}$ $N(\delta, S^{p-1}, ||\cdot||_2) \le (1 + 2/\delta)^p$

8.3 Application to estimating the Euclidean Norm of Random Vector

Definition 8.7 A vector $X \in \mathbb{R}^d$ is said to be $SG(\sigma^2)$ when $v^TX \in SG(\sigma^2)$ for each $v \in S^{d-1}$ (unit sphere). If coordinates of X are independent $SG(\sigma^2)$ this is true.

Theorem 8.8 Let X be a random vector $X \in \mathbb{R}^d$ be $SG_d(\sigma^2)$ then $\mathbb{E}[||X||] \leq 4\sigma\sqrt{d}$ and $||X|| \leq 4\sigma\sqrt{d} + 2\sigma\sqrt{\log(1/\delta)}$ with probability $\geq 1 - \delta$, $\delta \in (0,1)$.

Proof. Use variational characterization of ||X||: $||X|| = \max_{v \in B_d} v^T X$. Then ||X|| is the max of RVs indexed by B_d . $||X|| = \max_{v \in B_d} Y_v$. Let $\mathcal{N}_{1/2}$ be a 1/2 cover B_d in Euclidean norm $\Rightarrow |\mathcal{N}_{1/2}| \leq 5^d$. Next $\forall v \in B_d, \exists z = z(v) \in \mathcal{N}_{1/2}$ s.t. $v = z + w, w \in 1/2B_d$. So,

$$\begin{aligned} \max_{v \in B_d} & v^T X \leq \max_{z \in \mathcal{N}_{1/2}} z^T X + \underset{w \in 1/2B_d}{w^T X} \\ \Rightarrow & 1/2 \underset{v \in B_d}{\max} v^T X \leq 2 \underset{z \in \mathcal{N}_{1/2}}{\max} z^T X \end{aligned}$$

Use same argument for other way.

Remark

For $\epsilon \in (0,1)$ the same argument gives you

$$v_{v \in B_d}^T \le \frac{1}{1 - \epsilon} \max_{z \in \mathcal{N}_{\epsilon}} z^T X$$

where ϵ -cover of B_d in $||\cdot||_2$.