36-710, Fall 2019 Homework 1

Due Wed Sept 11 by 5:00pm in Alden's mailbox.

- 1. Prove Proposition 4.12.
- 2. Let F be a collection of functions from \mathbb{R}^d into $[0, b]$, for some $b > 0$. For each $\delta > 0$, let $N_{\infty}(\delta, \mathcal{F})$ denote the δ -covering number of F in the d_{∞} distance given by

$$
d_\infty(f,g)=\sup_{x\in\mathbb{R}^d}|f(x)-g(x)|,\quad f,g\in\mathcal{F}.
$$

Let (X_1, \ldots, X_n) be an i.i.d. sample from some distribution P on \mathbb{R}^d and P_n be the associated empirical measure. Show that

$$
\mathbb{P}\left(\|P_n-P\|_{\mathcal{F}}>\epsilon\right)\leq 2N_\infty(\epsilon/3,\mathcal{F})e^{-\frac{2n\epsilon^2}{9b^2}}\quad \epsilon>0.
$$

Hint: for any $\epsilon > 0$, consider a minimal $\epsilon/3$ covering of F. Then, for each $f \in \mathcal{F}$, there exists a function \overline{f} in the cover (which one depends on f) such that $d_{\infty}(f, \overline{f}) \leq \epsilon/3$. Run with it...

3. Reading Assignment.

Read the proof of Theorem 2.1 in the following paper, which provides dimension-free performance of k-means in Hilbert spaces:

Biau, G., Devroye, L. and Lugosi, G. (2008). On the Performance of Clustering in Hilbert Spaces, IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 54, NO. 2, 781–790.

You may assume that $\mathcal{H} = \mathbb{R}^d$

4. Recall the relative VC bounds: for a class A of sets in \mathbb{R}^d and an i.i.d. sample (X_1, \ldots, X_n) from a probability distribution P,

$$
\mathbb{P}\left(\sup_{A\in\mathcal{A}}\frac{P(A)-P_n(A)}{\sqrt{P(A)}}>\epsilon\right)\leq 4S_{\mathcal{A}}(2n)e^{-n\epsilon^2/4},\quad \epsilon>0,
$$

and

$$
\mathbb{P}\left(\sup_{A\in\mathcal{A}}\frac{P_n(A)-P(A)}{\sqrt{P_n(A)}}>\epsilon\right)\leq 4S_{\mathcal{A}}(2n)e^{-n\epsilon^2/4},\quad \epsilon>0,
$$

where $S_{\mathcal{A}}(n)$ is the *n*-shattering coefficient of \mathcal{A} , i.e.

$$
\max_{x_1^n} |\mathcal{A}(x_1^n)| = \max_{x_1^n} |x_1^n \cap A, A \in \mathcal{A}|
$$

where x_1^n denotes an *n*-tuple of points in \mathbb{R}^d . See, e.g.,

- Vapnik, V., Chervonenkis, A.: On the uniform convergence of relative frequencies of events to their probabilities. Theory of Probability and its Applications 16 (1971) 264–280.
- M. Anthony and J. Shawe-Taylor, "A result of Vapnik with applica- tions," Discrete Applied Mathematics, vol. 47, pp. 207-217, 1993.

(a) Show that

$$
\mathbb{P}\left(\exists A \in \mathcal{A} \colon P(A) > \epsilon \text{ and } P_n(A) \le (1-t)P(A)\right) \le 4S_{\mathcal{A}}(2n)e^{-n\epsilon t^2/4},
$$

for all $t \in (0,1]$ and $\epsilon > 0$. What do you obtain when $t = 1$?

(b) Show that, uniformly over all the sets $A \in \mathcal{A}$,

$$
P(A) \le P_n(A) + 2\sqrt{P_n(A)\frac{\log S_{\mathcal{A}}(2n) + \log \frac{4}{\delta}}{n}} + 4\frac{\log S_{\mathcal{A}}(2n) + \log \frac{4}{\delta}}{n},
$$

with probability at least $1 - \delta$ i Hint: use the fact that $A \leq$ √ obability at least $1 - \delta$, Hint: use the fact that $A \leq \sqrt{AB} + C$ implies that $A \leq$ $B^2 + B\sqrt{C} + C$, for all $A, B, C \geq 0$.

(c) Let B be a closed ball in \mathbb{R}^d (of arbitrary center and radius). Let k be a positive integer. Then $P_n(B) > \frac{k}{n}$ $\frac{k}{n}$ if and only if B contains more than k sample points. Show that, for any $\delta \in (0,1)$ and with $k \geq C' d \log n$ for some $C' > 0$, there exists a constant C_{δ} (depending on δ and C') such that, with probability at least $1 - \delta$, every ball B satisfies the following conditions:

i. if
$$
P(B) > C_{\delta} \frac{d \log n}{n}
$$
, then $P_n(B) > 0$;
ii. if $P(B) \ge \frac{k}{n} + \frac{C_{\delta}}{n} \sqrt{k d \log n}$, then $P_n(B) \ge \frac{k}{n}$;
iii. if $P(B) \le \frac{k}{n} - \frac{C_{\delta}}{n} \sqrt{k d \log n}$, then $P_n(B) \le \frac{k}{n}$;

Hint: use the fact that the VC dimension of the class of all closed Euclidean balls in \mathbb{R}^d is $d+1$.

Read the proof of Theorem 1 in

Kamalika Chaudhuri, Sanjoy Dasgupta, Samory Kpotufe, Ulrike von Luxburg: Consistent Procedures for Cluster Tree Estimation and Pruning. IEEE Trans. Information Theory 60(12): 7900-7912 (2014)

- 5. Prove Lemma 4.14.
- 6. When is the sample an ϵ cover of the support? Suppose that $X = (X_1, \ldots, X_n)$ is an i.i.d. sample from a probability distribution supported on S, assumed to be a compact subset of \mathbb{R}^d with non-empty interior (this means that S is the smallest closed and bounded subset of \mathbb{R}^d of dimension d such that $P(S) = 1$. In many problems in geometric and topological data analysis, it is often desirable that X be an ϵ -cover of S, which is equivalent to

$$
\mathcal{S} \subset \bigcup_{i=1}^{n} B(X_i, \epsilon),\tag{1}
$$

where $B(x, \epsilon)$ is the closed Euclidean ball centered at x and of radius ϵ . Assume that there exists a $a > 0$ such that

$$
\inf_{x \in S} P(B(x, r)) \ge \min\left\{1, \frac{r^d}{a}\right\}, \quad \forall r > 0.
$$

The above requirement is known as the *standard condition* and amounts to assuming (i) that P has a Lebesgue density bounded away from 0 over its support and (ii) that S does not get arbitrarily narrow or exhibits cusp-like protrusions.

(a) For a given ϵ , find a lower bound on n such that, with high probability, X is an ϵ -cover of S.

(b) The union of balls of radius ϵ centered at the sample points is an estimator of \mathcal{S} , known as the Devroye-Wise estimator. The Devroy-Wise estimator of S is consistent when ϵ can be chosen as a function of n, written as ϵ_n , in such a way that $\epsilon_n \to 0$ and [\(1\)](#page-1-0) holds with probability tending to 1 as $n \to \infty$. Find a scaling for ϵ_n that satisfies both conditions.

Hint: Take a look at this paper: Antonio Cuevas and Ricardo Fraiman. A plug-in approach to support estimation. Ann. Statist., 25(6):2300–2312, 1997.