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In this lecture, we present several motivations for studying what is known as the supremum of the
empirical process. This object of interest will occupy us for the first half of the semester.

1.1 Uniform Law of Large Numbers

Reference notes can be found in Chapter 4 of Wainwright’s textbook.

Let X1, . . . , Xn
iid∼ P with common mean µ. Recall that by the Law of Large Numbers,

X̄n =
1

n

n∑
i=1

Xi
P−→ µ

as n→∞. We can say more under additional assumptions. E.g. if the Xi’s are SG(σ2), then

P
(
|X̄n − µ| ≥ ε

)
≤ 2 exp

(
− nε2

σ2

)
, ∀ε > 0

But sometimes this is not enough. For example, let X1, . . . , Xn
iid∼ P with CDF F , fix t ∈ R, and let F̂n be

the empirical CDF defined as

F̂n(x) =
1

n

n∑
i=1

I(Xi ≤ x)

Note that
E[F̂n(t)] = F (t) = P(Xi ≤ t)

Also, we can write

F̂n(t)
d
=
Bin(F (t), n)

n

since the empirical CDF is just 1
n times the sum of i.i.d. Bernoulli(F(t)) random variables.

It easily follows, using Hoeffding’s inequality, that

F̂n(t)
P−→ F (t)

The difficulty arises when we wish to study

sup
t∈R
|F̂n(t)− F (t)|

Note that the Chernoff bound and similar techniques hold for a fixed t, not over all t ∈ R. The union bound
doesn’t help either, since R is uncountable. We seek a LLN that holds uniformly over all t ∈ R.
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1.2 General Setup

Let us now set up the general problem, and show that deriving a uniform LLN is just a special case of
studying the supremum of the empirical process.

In general, let X be a set and P be a probability on it. (We can think of X as Rd for most of our

purposes.) Let X1, . . . , Xn
i.i.d.∼ P . Let Pn be the empirical probability measure associated with this sample,

which defines a mapping from any measurable set to a number in [0, 1]:

A ⊆ X 7→ Pn(A) =
1

n

n∑
i=1

I(Xi ∈ A)

Let F be a class of functions on X taking values in R. Assume that

sup
f∈F

sup
x∈X
|f(x)| ≤ b

for some b > 0. In other words, we assume the class of functions is uniformly bounded, which is a strong
but useful assumption. We also introduce some notation. If f ∈ F , we define:

Pf ≡ E[f(X)]

Pnf ≡
1

n

n∑
i=1

f(Xi)

where X ∼ P .

Now we arrive at our main object of interest, the supremum of the empirical process:

‖Pn − P‖ = sup
f∈F

1

n

∣∣∣ n∑
i=1

(
f(Xi)− E[f(Xi)]

)∣∣∣
Returning to our uniform LLN example, note that if X = R and F = {(−∞, x], x ∈ R}, then for ft =
(−∞, t] ∈ F , we have

Pft = E[ft(X)] = P(X ≤ t) = F (t)

and similarly,
Pnft = F̂n(t)

It follows that the object we need to bound in order to derive a uniform LLN is just a special case of the
supremum of the empirical process:

‖Pn − P‖ = sup
f∈F
|F (t)− F̂n(t)|

As another example, we briefly show that in covariance matrix estimation, the operator norm of the differ-
ence between the empirical and true covariance matrices.

Let X1, . . . , Xn
iid∼ P on Rd with mean 0 and covariance matrix Σ = E[XXT ]. Let Σ̂n = 1

n

∑n
i=1XiX

T
i be

the empirical covariance matrix. Then we are interested in

‖Σ̂n − Σ‖op = max
ν∈Sd−1

|νT (Σ̂n − Σ)ν|

where we define the unit sphere in Rd

Sd−1 = {ν ∈ Rd : ‖ν‖ = 1}
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For each ν ∈ Sd−1, we define fν : Rd → R as

fν(X) = νTXXT ν

Then letting F = {fν , ν ∈ Sd−1}, we see that

‖Σ̂n − Σ‖op = ‖Pn − P‖F

So the operator norm is another familiar quantity we can express in terms of our main object of interest.

As a side note, what exactly do we mean by supremum of the empirical process? The empirical process
is just a stochastic process over F . For every function in this function class we have

f ∈ F 7→ Pn(f)− P (f)

In future lectures, our goal will be to show that ‖Pn − P‖F
P−a.s.−−−−→ 0 as n→∞.

1.3 Excess Risk

Reference notes can be found in Chapter 4.2.1 of Wainwright’s textbook.

Another motivation for studying the supremum of the empirical process is the decision-theoretic concern
with excess risk.

Let {Pθ : θ ∈ Ω} be a collection of probability distributions on X indexed by some parameter θ ∈ Ω.

Let X1, . . . , Xn
iid∼ Pθ∗ where Pθ∗ is in the collection. We define a loss function to measure the discrepancy

between x and θ:
(x, θ) ∈ X ⊗ Ω −→ Lθ(x) ∈ R+

For example, we could have
Lθ(x) = ‖x− θ‖

or
Lθ(x) = |x− θ|2, X = Ω = R

We can then define the risk:
R(θ, θ∗) = EX∼Pθ∗ [Lθ(X)], θ ∈ Ω

and the empirical risk:

R̂(θ, θ∗) =
1

n

n∑
i=1

Lθ(Xi), θ ∈ Ω

This leads to the notion of the empirical risk minimzer:

θ̂ = arg min
θ∈Ω

R̂(θ, θ∗)

For example, assume each probability distribution Pθ has a density fθ, and define the loss function to be the
log-likelihood ratio:

Lθ(x) = log
fθ∗(x)

fθ(x)

Then θ̂ is the MLE (maximum likelihood estimator) of θ∗, so that the minimizer of risk is the maximizer of
likelihood. In this case, we also have that R(θ, θ∗) = KL(Pθ, Pθ∗).
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As a concrete example, consider binary classification. We have n i.i.d. pairs (Xi, Yi) ∈ Rd × {−1, 1}.
We can write the joint distribution of the data as

PX,Y = PY |XPX

using Bayes’ rule. We typically are not concerned with PX . The conditional distribution PY |X can be
specified, via a 1-to-1 mapping, by the likelihood ratio:

x ∈ Rd 7→ ψ(x) =
P(Y = 1|X = x)

P(Y = −1|X = x)

In this example, X = Rd × {−1, 1} is the abstract space, and Ω is the set of all classification functions.

Our goal is to estimate a function f : Rd → {−1, 1} that minimizes PX,Y (f(X) 6= Y ). We define the
loss function

Lf ((x, y)) =

{
1, f(x) 6= y

0, else

Suppose that unconditionally, P(Y = 1) = P(Y = −1). Then the canonical example of the Bayes classifier,
f∗(x), is the optimal classifier for this problem:

f∗(x) =

{
1, ψ(x) ≥ 1/2

−1, else

Now, we come to the notion of excess risk:

δR(θ̂, θ∗) = R(θ̂, θ∗)− inf
θ∈Ω

R(θ, θ∗)

We can rewrite this as

δR(θ̂, θ∗) = R(θ̂, θ∗)− R̂(θ̂, θ∗) + R̂(θ̂, θ∗)− R̂(θ0, θ
∗) + R̂(θ0, θ

∗)−R(θ0, θ
∗) = T1 + T2 + T3

where θ0 is such that
R(θ0, θ

∗) = inf
θ∈Ω

R(θ, θ∗)

and
T1 = R(θ̂, θ∗)− R̂(θ̂, θ∗)

T2 = R̂(θ̂, θ∗)− R̂(θ0, θ
∗)

T3 = R̂(θ0, θ
∗)−R(θ0, θ

∗)

Note that T2 ≤ 0 since θ̂ is the ERM that minimizes R̂. So we have

δR(θ̂, θ∗) = T1 + T2 + T3 ≤ T1 + T3

The term T3 is also easily dealt with, as we can just use a standard concentration inequality because both
θ0 and θ∗ are fixed.

The term T1 is the difficult one, since θ̂ is random and data-dependent. We basically need to bound

T1 ≤ sup
θ∈Ω

1

n

∣∣∣ n∑
i=1

(
Lθ(xi)− E[Lθ(xi)]

)∣∣∣
= ‖Pn − P‖F

where we define the function class
F = {Lθ(·), θ ∈ Ω}

Observe that yet again, we need to “sup out”, and yet again our difficult problem reduces to a special case
of bounding the supremum of an empirical process.
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