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Quick announcements

• If you’re still on the waitlist, talk to Ale

• We voted in class today to do a final project instead of a final exam. More details to come.

When we left off in the spring in 36-709, we were discussing VC theory. This lecture serves as a recap of the
elements of VC theory we covered then. Thus, proofs of theorems will only be sketched in these notes; full
proofs can either be found in last semester’s notes or chapter 4 of [W].

2.0 Rademacher Complexity

Recall that we are interested in ‖Pn − P‖F , which is the supremum of the empirical process. Note that F
is a class of uniformly bounded, real-valued functions, and Pn is the empirical measure. In order to control
‖Pn − P‖F , we need to be able to control the Rademacher complexity of the class of functions, F .

Definition: Let xn1 = (x1, ..., xn) ∈ Xn be arbitrary and set F = {(f(x1), ..., f(xn)), f ∈ F} ⊆ Rn. Let

ε1, ..., εn
iid∼ Rademacher (ie, P (ε1 = 1) = P (ε1 = −1) = 1/2)

The empirical Rademacher complexity of F at xn1 is

Rn(F(xn1 )) = Eε

[
sup
f∈F

1

n

∣∣∣∣∣
n∑
i=1

εif(xi)

∣∣∣∣∣
]

where ε = ε1, ..., εn. The Rademacher complexity of F with respect to P is

Rn(F) = Ex,ε

[
sup
f∈F

1

n

∣∣∣∣∣
n∑
i=1

εif(xi)

∣∣∣∣∣
]

where x = (x1, ..., xn)
iid∼ P . Essentially, the Rademacher complexity tells us how well we can fit functions of

F to random noise.

The punch line of all of this is that: ‖Pn − P‖F
p/a.e.→ 0 iff Rn(F) → 0 as n → ∞. The following theorem

(theorem 4.10 in [W]) says that the supremum of the empirical process concentrates around 2Rn.
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Theorem 2.1 Let F be a class of functions on X taking values in R such that ‖f‖∞ = supx f(x) ≤ b∀f ∈ F
and let x1, ..., xn

iid∼ P , where P is a probability measure on X . Then, ∀t > 0,

P (‖Pn − P‖F ≤ 2Rn(F) + t) ≥ 1− exp

(
−nt2

2b2

)
Proof sketch:

1. Show that ‖Pn − P‖F concentrates around its mean, E [‖Pn − P‖F ] in a sub-Gaussian fashion. To do
this, use the bounded difference inequality.

2. From the symmetrization lemma (given below; proposition 4.11 in [W]), E [‖Pn − P‖F ] ≤ 2Rn(F).

Lemma 2.2 Let F be a class of integrable functions with respect to P on X , and let ‖Rn‖F = supf∈F
1
n |
∑n
i=1 εif(xi)|

and Rn(F) = Ex,ε [‖Rn‖F ]. Then, for any convex, non-decreasing function, φ,

Ex,ε
[
φ

(
1

2
‖Rn‖F̄

)]
≤ Ex [φ (‖Pn − P‖F )] ≤ Ex,ε [φ (2 ‖Rn‖F )]

where F̄ = {f − E [f(x)] , f ∈ F}

It is also possible to show that, with probability ≥ 1−exp(−nt
2

2b2 ),

‖Pn − P‖F ≥
1

2
Rn(F)−

supf∈F |E[f(x)]|
√
n

− t

2.1 VC Theory

Definition: F has polynomial discrimination with parameter ν ≥ 1 if for each n ≥ 1 and each xn1 ,
|F(xn1 )| = (f(x1), ..., f(xn)), f ∈ F ⊆ Rn ≤ (n+ 1)ν , where |F(xn1 )| is the cardinality of the set.

This is an interesting property because this could hold for classes F that are infinitely large.

Lemma 2.3 If F has polynomial discrimination with parameter ν,

Eε

[
sup
f∈F

1

n

∣∣∣∣∣
n∑
i=1

εif(xi)

∣∣∣∣∣
]
≤ 2D(xn1 )

√
νlog(n)

n

where D(xn1 ) = supf

√
1
n

∑n
i=1 f

2(xi) ∀xn1

The quantity D(xn1 ) is bounded above by b if functions are uniformly bounded by b, and we said at the
beginning of the lecture that we are concerned with uniformly bounded functions.
This lemma implies that ∀P ,

Rn(F) = Ex
[
Eε|x [Rn(F(xn1 ))]

]
= Ex

[
Eε [Rn(F(xn1 )]

]
when x is fixed, ε independent

≤ Ex

[
2b

√
νlog(n)

n

]
lemma 2.3

= 2b

√
νlog(n)

n
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Example: Last semester, we looked at the class of functions F = {I(−∞,z), z ∈ R}. We know ‖Pn − P‖F =

supz∈R

∣∣∣F̂n(z)− F (z)
∣∣∣ for this class of functions, where F is the CDF. It is easy to see that |F(xn1 )| ≤

(n+ 1) ∀xn1 . In this case, ν = 1, so

P

(
sup
z∈R

∣∣∣F̂n(z)− F (z)
∣∣∣ ≥ 4

√
log(n+ 1)

n
+ t

)
≤ 2exp

{
−nt2

2

}
Setting equal to 1

n and solving for t, we get that, with probability ≥ 1− 1
n

sup
z∈R

∣∣∣F̂n(z)− F (z)
∣∣∣ ≤ c√ log(n)

n

This result is cool because we’re not fixing z since we are taking the supremum over all z.

NOTE: To get a tighter bound, use the DKW Inequality, which says

P (supz∈R

∣∣∣F̂n(z)− F (z)
∣∣∣ ≥ t) ≤ 2exp

{
−nt2

2

}

2.1.1 VC Dimension

Let F be a class of Boolean functions (ie, take values in 0,1). Each f ∈ F corresponds to a subset of
X : {x ∈ X : f(x) = 1}. We will develop the theory for A, a collection of subsets of X .

Then define for each xn1 , A(xn1 ) = {xn1 ∩ A,A ∈ A}. We should note that we can think of A(xn1 ) as
F(xn1 ). Clearly, |A(xn1 )| ≤ 2n for any xn1 (the element xi can either be in the subset or not, which means
the cardinality of this set cannot be greater than 2n, which is the number of subsets you can make from n
elements). Informal: If A is a class of sets of finite dimension, ν, then |A(xn1 )| = 2n.

Definition: A n-tuple of points, xn1 , is said to be shattered by A if |A(xn1 )| = 2n

Definition: The VC Dimension of A, ν = ν(A), is the largest integer n such that some n-tuple xn1
is shattered by A.

Simply put, a set of points is shattered if all possible combinations of points in the set can be ”picked
out” by A. Thus, the VC Dimension refers to the largest number of points that A can ”pick out”. Let’s
look at some examples.

Examples:

1. A = {(−∞, z], z ∈ R}
The VC Dimension is 1; given any two numbers in R, A cannot “pick out” the largest valued number
without also including the other number in the subset.

2. A = {(a, b], a < b}
The VC Dimension is 2; given any three numbers in R, A cannot “pick out” only the largest and
smallest numbers. Any subset that includes the largest and smallest numbers would have to include
the third, in-between number.

3. A = the set of polygons in R2 with arbitrarily many edges
The VC Dimension is infinity. Imagine putting a large number of points on a circle; no matter how
many points there are, a polygon can be drawn to connect them.


