36-710: Advanced Statistical Theory II Fall 2019

Lecture #2: August 28

Lecturer: Alessandro Rinaldo Scribes: Mikaela Meyer

Note: LaTeX template courtesy of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

Quick announcements

- If you're still on the waitlist, talk to Ale
- We voted in class today to do a final project instead of a final exam. More details to come.

When we left off in the spring in 36-709, we were discussing VC theory. This lecture serves as a recap of the elements of VC theory we covered then. Thus, proofs of theorems will only be sketched in these notes; full proofs can either be found in last semester's notes or chapter 4 of [W].

2.0 Rademacher Complexity

Recall that we are interested in $||P_n - P||_{\mathcal{F}}$, which is the supremum of the empirical process. Note that $\mathcal F$ is a class of uniformly bounded, real-valued functions, and P_n is the empirical measure. In order to control $||P_n - P||_{\mathcal{F}}$, we need to be able to control the Rademacher complexity of the class of functions, F.

Definition: Let $x_1^n = (x_1, ..., x_n) \in \mathcal{X}^n$ be arbitrary and set $\mathcal{F} = \{(f(x_1), ..., f(x_n)), f \in \mathcal{F}\}\subseteq \mathbb{R}^n$. Let $\epsilon_1, ..., \epsilon_n \stackrel{iid}{\sim}$ Rademacher (ie, $P(\epsilon_1 = 1) = P(\epsilon_1 = -1) = 1/2$)

The empirical Rademacher complexity of $\mathcal F$ at x_1^n is

$$
\mathcal{R}_n(\mathcal{F}(x_1^n)) = \mathbb{E}_{\underline{\epsilon}} \left[\sup_{f \in \mathcal{F}} \frac{1}{n} \left| \sum_{i=1}^n \epsilon_i f(x_i) \right| \right]
$$

where $\underline{\epsilon} = \epsilon_1, ..., \epsilon_n$. The **Rademacher complexity** of F with respect to P is

$$
\mathcal{R}_n(\mathcal{F}) = \mathbb{E}_{\underline{x}, \underline{\epsilon}} \left[\sup_{f \in \mathcal{F}} \frac{1}{n} \left| \sum_{i=1}^n \epsilon_i f(x_i) \right| \right]
$$

where $\underline{x} = (x_1, ..., x_n) \stackrel{iid}{\sim} P$. Essentially, the Rademacher complexity tells us how well we can fit functions of ${\mathcal F}$ to random noise.

The punch line of all of this is that: $||P_n - P||$ $\stackrel{p/a.e.}{\rightarrow} 0$ iff $\mathcal{R}_n(\mathcal{F}) \rightarrow 0$ as $n \rightarrow \infty$. The following theorem (theorem 4.10 in [W]) says that the supremum of the empirical process concentrates around $2\mathcal{R}_n$.

Theorem 2.1 Let F be a class of functions on X taking values in \mathbb{R} such that $||f||_{\infty} = \sup_x f(x) \leq b \forall f \in \mathcal{F}$ and let $x_1, ..., x_n \stackrel{iid}{\sim} P$, where P is a probability measure on X. Then, $\forall t > 0$,

$$
P(||P_n - P||_{\mathcal{F}} \le 2\mathcal{R}_n(\mathcal{F}) + t) \ge 1 - exp\left(\frac{-nt^2}{2b^2}\right)
$$

Proof sketch:

- 1. Show that $||P_n P||_{\mathcal{F}}$ concentrates around its mean, $\mathbb{E}[||P_n P||_{\mathcal{F}}]$ in a sub-Gaussian fashion. To do this, use the bounded difference inequality.
- 2. From the symmetrization lemma (given below; proposition 4.11 in [W]), $\mathbb{E}[\Vert P_n P \Vert_{\mathcal{F}}] \leq 2\mathcal{R}_n(\mathcal{F})$.

Lemma 2.2 Let F be a class of integrable functions with respect to P on X, and let $||R_n||_{\mathcal{F}} = \sup_{f \in \mathcal{F}} \frac{1}{n} |\sum_{i=1}^n \epsilon_i f(x_i)|$ and $\mathcal{R}_n(\mathcal{F}) = \mathbb{E}_{\underline{x}, \underline{\epsilon}} [\|\mathcal{R}_n\|_{\mathcal{F}}].$ Then, for any convex, non-decreasing function, ϕ ,

$$
\mathbb{E}_{\underline{x},\underline{\epsilon}}\left[\phi\left(\frac{1}{2} \|\mathcal{R}_n\|_{\bar{\mathcal{F}}}\right)\right] \leq \mathbb{E}_{\underline{x}}\left[\phi\left(\|P_n - P\|_{\mathcal{F}}\right)\right] \leq \mathbb{E}_{\underline{x},\underline{\epsilon}}\left[\phi\left(2 \|\mathcal{R}_n\|_{\mathcal{F}}\right)\right]
$$

where $\bar{\mathcal{F}} = \{f - \mathbb{E}\left[f(x)\right], f \in \mathcal{F}\}$

It is also possible to show that, with probability $\geq 1-\exp\left(\frac{-nt^2}{2b^2}\right)$,

$$
||P_n - P||_{\mathcal{F}} \ge \frac{1}{2} \mathcal{R}_n(\mathcal{F}) - \frac{\sup_{f \in \mathcal{F}} |\mathbb{E}[f(x)]|}{\sqrt{n}} - t
$$

2.1 VC Theory

Definition: F has **polynomial discrimination** with parameter $\nu \geq 1$ if for each $n \geq 1$ and each x_1^n , $|\mathcal{F}(x_1^n)| = (f(x_1),...,f(x_n)), f \in \mathcal{F} \subseteq \mathbb{R}^n \leq (n+1)^{\nu}$, where $|\mathcal{F}(x_1^n)|$ is the cardinality of the set.

This is an interesting property because this could hold for classes $\mathcal F$ that are infinitely large.

Lemma 2.3 If F has polynomial discrimination with parameter ν ,

$$
\mathbb{E}_{\underline{\epsilon}} \left[\sup_{f \in \mathcal{F}} \frac{1}{n} \left| \sum_{i=1}^{n} \epsilon_i f(x_i) \right| \right] \le 2D(x_1^n) \sqrt{\frac{\nu \log(n)}{n}}
$$

where $D(x_1^n) = \sup_f \sqrt{\frac{1}{n} \sum_{i=1}^{n} f^2(x_i)} \quad \forall x_1^n$

The quantity $D(x_1^n)$ is bounded above by b if functions are uniformly bounded by b, and we said at the beginning of the lecture that we are concerned with uniformly bounded functions. This lemma implies that $\forall P$,

$$
\mathcal{R}_n(\mathcal{F}) = \mathbb{E}_{\underline{x}} \left[\mathbb{E}_{\underline{\epsilon} | \underline{x}} \left[\mathcal{R}_n(\mathcal{F}(x_1^n)) \right] \right]
$$

\n
$$
= \mathbb{E}_{\underline{x}} \left[\mathbb{E}_{\underline{\epsilon}} \left[\mathcal{R}_n(\mathcal{F}(x_1^n)) \right] \right]
$$
 when \underline{x} is fixed, $\underline{\epsilon}$ independent
\n
$$
\leq \mathbb{E}_{\underline{x}} \left[2b\sqrt{\frac{\nu \log(n)}{n}} \right]
$$

\n
$$
= 2b\sqrt{\frac{\nu \log(n)}{n}}
$$
 lemma 2.3

Example: Last semester, we looked at the class of functions $\mathcal{F} = \{\mathbb{I}_{(-\infty,z)}, z \in \mathbb{R}\}\.$ We know $||P_n - P||_{\mathcal{F}} =$ $\sup_{z\in\mathbb{R}}\left|\hat{F}_n(z)-F(z)\right|$ for this class of functions, where F is the CDF. It is easy to see that $|\mathcal{F}(x_1^n)| \leq$ $(n+1)$ $\forall x_1^n$. In this case, $\nu = 1$, so

$$
P\left(\sup_{z\in\mathbb{R}}\left|\hat{F}_n(z)-F(z)\right|\geq 4\sqrt{\frac{\log(n+1)}{n}}+t\right)\leq 2\exp\left\{\frac{-nt^2}{2}\right\}
$$

Setting equal to $\frac{1}{n}$ and solving for t, we get that, with probability $\geq 1 - \frac{1}{n}$

$$
\sup_{z \in \mathbb{R}} \left| \hat{F}_n(z) - F(z) \right| \le c \sqrt{\frac{\log(n)}{n}}
$$

This result is cool because we're not fixing z since we are taking the supremum over all z .

NOTE: To get a tighter bound, use the DKW Inequality, which says $P(\sup_{z \in \mathbf{R}} \left| \hat{F}_n(z) - F(z) \right| \ge t) \le 2 \exp \left\{ \frac{-nt^2}{2} \right\}$

2.1.1 VC Dimension

Let F be a class of Boolean functions (ie, take values in 0,1). Each $f \in \mathcal{F}$ corresponds to a subset of $\mathcal{X}: \{x \in \mathcal{X}: f(x) = 1\}$. We will develop the theory for \mathcal{A} , a collection of subsets of \mathcal{X} .

Then define for each x_1^n , $\mathcal{A}(x_1^n) = \{x_1^n \cap A, A \in \mathcal{A}\}\$. We should note that we can think of $\mathcal{A}(x_1^n)$ as $\mathcal{F}(x_1^n)$. Clearly, $|\mathcal{A}(x_1^n)| \leq 2^n$ for any x_1^n (the element x_i can either be in the subset or not, which means the cardinality of this set cannot be greater than $2ⁿ$, which is the number of subsets you can make from n elements). Informal: If A is a class of sets of finite dimension, ν , then $|\mathcal{A}(x_1^n)| = 2^n$.

Definition: A n-tuple of points, x_1^n , is said to be **shattered by** \mathcal{A} if $|\mathcal{A}(x_1^n)| = 2^n$

Definition: The VC Dimension of A, $\nu = \nu(A)$, is the largest integer n such that <u>some</u> n-tuple x_1^n is shattered by A.

Simply put, a set of points is shattered if all possible combinations of points in the set can be "picked out" by A . Thus, the VC Dimension refers to the largest number of points that A can "pick out". Let's look at some examples.

Examples:

1. $A = \{(-\infty, z], z \in \mathbb{R}\}\$

The VC Dimension is 1; given any two numbers in \mathbb{R} , A cannot "pick out" the largest valued number without also including the other number in the subset.

- 2. $\mathcal{A} = \{(a, b), a < b\}$ The VC Dimension is 2; given any three numbers in \mathbb{R} , $\mathcal A$ cannot "pick out" only the largest and smallest numbers. Any subset that includes the largest and smallest numbers would have to include the third, in-between number.
- 3. $\mathcal{A} =$ the set of polygons in \mathbb{R}^2 with arbitrarily many edges The VC Dimension is infinity. Imagine putting a large number of points on a circle; no matter how many points there are, a polygon can be drawn to connect them.