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4.1 Metric entropy and its uses (Chapter 5 in [W])

4.1.1 Covering and packing

Definition 4.1 (metric space) A metric space is a tuple (T, ρ) where T is a non-empty set and ρ : T×T →
R is a function such that for all θ, θ̃, θ̂ ∈ T the following conditions are satisfied:

(i) (Non-negativity) ρ(θ, θ̃) ≥ 0 with equality iff θ = θ̃.

(ii) (Symmetry) ρ(θ, θ̃) = ρ(θ̃, θ).

(iii) (Triangle inequality) ρ(θ, θ̃) ≤ ρ(θ, θ̂) + ρ(θ̂, θ̃).

Familiar examples include:

• Euclidean metric on Rd: ρ(θ, θ̃) =
∥∥∥θ − θ̃∥∥∥

2
.

• Rescaled Hamming metric on discrete cube {0, 1}d: ρ(θ, θ̃) = 1
d

∑d
i=1 1(θi 6= θ̃i).

• Function space L2(µ, [0, 1]) with metric ‖f − g‖2 =
(∫ 1

0
(f(x)− g(x))2dµ(x)

)1/2
.

• Function space C([0, 1]) with metric ‖f − g‖∞ = supx |f(x)− g(x)|.

Definition 4.2 (Covering number) A δ-cover of a set T wrt to a metric ρ is a set
{
θ1, θ2, . . . , θN

}
⊆ T

such that for all θ ∈ T there exists an i ∈ [N ] such that ρ(θ, θi) ≤ δ. The δ-covering number N (δ, T, ρ)
is defined as the minimal cardinality of any δ-cover. We will assume that (T, p) is totally bounded which
ensures that the covering number is finite for all δ.

It is obvious that N (δ′, T, ρ) ≤ N (δ, T, ρ) if δ ≤ δ′.

In the situation of Theorem 4.2, we call logN (δ, T, ρ) metric entropy.

Definition 4.3 (Packing number) A δ-packing number of a set T wrt ρ is a set {θ1, θ2, . . . , θM} ⊆ T
such that ρ(θi, θj) > δ for all i 6= j ∈ [M ]. The maximum of any δ-packing is called packing number and we
write M(δ, T, ρ).
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Figure 4.1: Visualization of δ-cover and δ-packing of W ⊆ T in the metric space (T, ρ) = (R2, ‖·‖2). The set
P1 = {w1, w2} is a maximum 2ε-packing of W (left). The set P2 = {w3, w4, w5, w6} is a maximum ε-packing of W
and an ε-cover (right).

Covering and packing number are closely related as we can see in the next Lemma. An example is depicted
in Figure 4.1.

Lemma 4.4 (Lemma 5.5 in [W]) For δ > 0, the packing and covering numbers satisfy

M(2δ, T, ρ) ≤ N (δ, T, ρ) ≤M(δ, T, ρ).

Before stating the next Lemma, we define the Minkowski sum for two setsA andB byA+B := {a+ b : a ∈ A, b ∈ B}
and {αA} := {αa : a ∈ A}.

Lemma 4.5 (Volume ratio bounds and metric entropy, Lemma 5.7 in [W]) Let ‖·‖ , ‖·‖′ a pair of
norms and let B and B′ be the corresponding unit balls in Rd. Then,(

1

δ

)d
Vol(B)

Vol(B′)
≤ N (δ,B, ‖·‖′)

(∗)
≤ Vol((2/δ)B +B′)

Vol(B′)
.

If B ⊆ B′, (∗) can be simplified to (2/δ + 1)d Vol(B)
Vol(B′) since Vol(αS) = αdVol(S).

Proof: We take a δ-cover B =
{
θ1, θ2, . . . , θN

}
in ‖·‖′. Then, B ⊆

⋃N
i=1

{
θi + δB′

}
and Vol(B) ≤

NVol(δB′). This gives us the first inequality. For the second inequality, we note that the balls
{
θi + (δ/2)B′

}
are dosjoint and belong to the set B+ (δ/2)B′. It follows that MVol((δ/2)B′) ≤ Vol(B+ (δ/2)B′) and thus

M ≤ Vol(B + (δ/2)B′)

Vol((δ/2)B′)
=

Vol((2/δ)B +B′)

Vol(B′)
.

To get some intuition, we take B = B′ and ‖·‖ = ‖·‖′. Then,

d log

(
1

δ

)
≤ log (N (δ,B, ‖·‖)) ≤ d log

(
2

δ
+ 1

)
.

Choosing the sup norm ‖·‖∞ (and thus Bd∞ = [−1, 1]d), we receive

log(N (δ,Bd∞), ‖·‖∞) � d log

(
1

δ

)
.

Example 4.6 (Lipschitz functions on the unit interval) Consider a class of Lipschitz functions
FL = {g : [0, 1]→ R : g(0) = 0, |g(x)− g(y)| ≤ L |x− y| ∀x, y ∈ [0, 1]} for some L > 0. Then, we can prove
that

log(N (δ,FL, ‖·‖∞)) � L

δ
.
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A proof of this Example is given in [W].

4.1.2 Gaussian and Rademacher complexities

Given a set T ⊆ Rd, the family {Gθ : θ ∈ T} with

Gθ := 〈w, θ〉 =

d∑
i=1

wiθi with wi
iid∼ N (0, 1)

defines a stochastic process known as the canonical Gaussian process associated with the set T . The quantity
G(T ) = E[supθ∈T 〈w, θ, 〉] is referred to as Gaussian complexity or Gaussian width of T .

When we replace the wi with Rademacher RVs εi ∼ U({±1}), we get Rθ = 〈ε, θ〉 =
∑d
i=1 εiθi, and the

quantity R(T ) = E[supθ∈T 〈θ, ε〉] is referred to as Rademacher complexity.

One can show that

R(T ) ≤
√
π

2
G(T )

is always true. However, there are cases in which G(T ) can be much larger.

Example 4.7 (Complexity of Bd2 = {θ : ‖θ‖2 ≤ 1}) We see that

R(Bd2 ) = E[ sup
θ∈Bd

2

〈ε, θ〉] = E[‖·‖2] =
√
d,

where the second equality follows from Cauchy-Schwarz. For the Gaussian complexity, we use Jensen’s
inequality and receive

G(Bd2 ) = E[‖·‖2] ≤
√

E[‖w‖22] =
√
d,

which shows that R(Bd2 ) ≥ G(Bd2 ). G(Bd2 ) =
√
d(1− o(1)).
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