36-710: Advanced Statistical Theory II

Lecture 4: September 9

Lecturer: Matey Neykov

Scribes: Nil-Jana Akpinar

Fall 2019

Note: LaTeX template courtesy of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

4.1 Metric entropy and its uses (Chapter 5 in [W])

4.1.1 Covering and packing

Definition 4.1 (metric space) A metric space is a tuple (T, ρ) where T is a non-empty set and $\rho: T \times T \to \mathbb{R}$ is a function such that for all $\theta, \tilde{\theta}, \hat{\theta} \in T$ the following conditions are satisfied:

- (i) (Non-negativity) $\rho(\theta, \tilde{\theta}) \ge 0$ with equality iff $\theta = \tilde{\theta}$.
- (*ii*) (Symmetry) $\rho(\theta, \tilde{\theta}) = \rho(\tilde{\theta}, \theta)$.
- (iii) (Triangle inequality) $\rho(\theta, \tilde{\theta}) \leq \rho(\theta, \hat{\theta}) + \rho(\hat{\theta}, \tilde{\theta}).$

Familiar examples include:

- Euclidean metric on \mathbb{R}^d : $\rho(\theta, \tilde{\theta}) = \left\| \theta \tilde{\theta} \right\|_2$.
- Rescaled Hamming metric on discrete cube $\{0,1\}^d$: $\rho(\theta, \tilde{\theta}) = \frac{1}{d} \sum_{i=1}^d \mathbb{1}(\theta_i \neq \tilde{\theta}_i).$
- Function space $\mathcal{L}^2(\mu, [0, 1])$ with metric $||f g||_2 = \left(\int_0^1 (f(x) g(x))^2 d\mu(x)\right)^{1/2}$.
- Function space $\mathcal{C}([0,1])$ with metric $\|f g\|_{\infty} = \sup_{x} |f(x) g(x)|$.

Definition 4.2 (Covering number) A δ -cover of a set T wrt to a metric ρ is a set $\{\theta^1, \theta^2, \ldots, \theta^N\} \subseteq T$ such that for all $\theta \in T$ there exists an $i \in [N]$ such that $\rho(\theta, \theta^i) \leq \delta$. The δ -covering number $\mathcal{N}(\delta, T, \rho)$ is defined as the minimal cardinality of any δ -cover. We will assume that (T, p) is totally bounded which ensures that the covering number is finite for all δ .

It is obvious that $\mathcal{N}(\delta', T, \rho) \leq \mathcal{N}(\delta, T, \rho)$ if $\delta \leq \delta'$.

In the situation of Theorem 4.2, we call $\log \mathcal{N}(\delta, T, \rho)$ metric entropy.

Definition 4.3 (Packing number) A δ -packing number of a set T wrt ρ is a set $\{\theta^1, \theta^2, \ldots, \theta^M\} \subseteq T$ such that $\rho(\theta^i, \theta^j) > \delta$ for all $i \neq j \in [M]$. The maximum of any δ -packing is called packing number and we write $\mathcal{M}(\delta, T, \rho)$.

Figure 4.1: Visualization of δ -cover and δ -packing of $W \subseteq T$ in the metric space $(T, \rho) = (\mathbb{R}^2, \|\cdot\|_2)$. The set $P_1 = \{w_1, w_2\}$ is a maximum 2ε -packing of W (left). The set $P_2 = \{w_3, w_4, w_5, w_6\}$ is a maximum ε -packing of W and an ε -cover (right).

Covering and packing number are closely related as we can see in the next Lemma. An example is depicted in Figure 4.1.

Lemma 4.4 (Lemma 5.5 in [W]) For $\delta > 0$, the packing and covering numbers satisfy

$$\mathcal{M}(2\delta, T, \rho) \le \mathcal{N}(\delta, T, \rho) \le \mathcal{M}(\delta, T, \rho).$$

Before stating the next Lemma, we define the *Minkowski sum* for two sets A and B by $A+B := \{a+b : a \in A, b \in B\}$ and $\{\alpha A\} := \{\alpha a : a \in A\}$.

Lemma 4.5 (Volume ratio bounds and metric entropy, Lemma 5.7 in [W]) Let $\|\cdot\|$, $\|\cdot\|'$ a pair of norms and let B and B' be the corresponding unit balls in \mathbb{R}^d . Then,

$$\left(\frac{1}{\delta}\right)^{d} \frac{Vol(B)}{Vol(B')} \le \mathcal{N}(\delta, B, \left\|\cdot\right\|') \stackrel{(*)}{\le} \frac{Vol((2/\delta)B + B')}{Vol(B')}.$$

If $B \subseteq B'$, (*) can be simplified to $(2/\delta + 1)^d \frac{Vol(B)}{Vol(B')}$ since $Vol(\alpha S) = \alpha^d Vol(S)$.

Proof: We take a δ -cover $B = \{\theta^1, \theta^2, \dots, \theta^N\}$ in $\|\cdot\|'$. Then, $B \subseteq \bigcup_{i=1}^N \{\theta^i + \delta B'\}$ and $\operatorname{Vol}(B) \leq N\operatorname{Vol}(\delta B')$. This gives us the first inequality. For the second inequality, we note that the balls $\{\theta^i + (\delta/2)B'\}$ are dosjoint and belong to the set $B + (\delta/2)B'$. It follows that $M\operatorname{Vol}((\delta/2)B') \leq \operatorname{Vol}(B + (\delta/2)B')$ and thus

$$M \le \frac{\operatorname{Vol}(B + (\delta/2)B')}{\operatorname{Vol}((\delta/2)B')} = \frac{\operatorname{Vol}((2/\delta)B + B')}{\operatorname{Vol}(B')}$$

To get some intuition, we take B = B' and $\|\cdot\| = \|\cdot\|'$. Then,

$$d\log\left(\frac{1}{\delta}\right) \leq \log\left(\mathcal{N}(\delta, B, \|\cdot\|)\right) \leq d\log\left(\frac{2}{\delta}+1\right).$$

Choosing the sup norm $\|\cdot\|_{\infty}$ (and thus $B^d_{\infty} = [-1, 1]^d$), we receive

$$\log(\mathcal{N}(\delta, B^d_{\infty}), \|\cdot\|_{\infty}) \asymp d \log\left(\frac{1}{\delta}\right).$$

Example 4.6 (Lipschitz functions on the unit interval) Consider a class of Lipschitz functions $\mathcal{F}_L = \{g : [0,1] \to \mathbb{R} : g(0) = 0, |g(x) - g(y)| \le L |x - y| \forall x, y \in [0,1]\}$ for some L > 0. Then, we can prove that

$$\log(\mathcal{N}(\delta, \mathcal{F}_L, \|\cdot\|_{\infty})) \asymp \frac{L}{\delta}.$$

A proof of this Example is given in [W].

4.1.2 Gaussian and Rademacher complexities

Given a set $T \subseteq \mathbb{R}^d$, the family $\{G_\theta : \theta \in T\}$ with

$$G_{\theta} := \langle w, \theta \rangle = \sum_{i=1}^{d} w_i \theta_i \text{ with } w_i \stackrel{iid}{\sim} \mathcal{N}(0, 1)$$

defines a stochastic process known as the canonical Gaussian process associated with the set T. The quantity $\mathcal{G}(T) = \mathbb{E}[\sup_{\theta \in T} \langle w, \theta, \rangle]$ is referred to as Gaussian complexity or Gaussian width of T.

When we replace the w_i with Rademacher RVs $\varepsilon_i \sim U(\{\pm 1\})$, we get $R_{\theta} = \langle \varepsilon, \theta \rangle = \sum_{i=1}^d \varepsilon_i \theta_i$, and the quantity $\mathcal{R}(T) = \mathbb{E}[\sup_{\theta \in T} \langle \theta, \varepsilon \rangle]$ is referred to as *Rademacher complexity*.

One can show that

$$\mathcal{R}(T) \leq \sqrt{\frac{\pi}{2}}\mathcal{G}(T)$$

is always true. However, there are cases in which $\mathcal{G}(T)$ can be much larger.

Example 4.7 (Complexity of $B_2^d = \{\theta : \|\theta\|_2 \le 1\}$) We see that

$$\mathcal{R}(B_2^d) = \mathbb{E}[\sup_{\theta \in B_2^d} \langle \varepsilon, \theta \rangle] = \mathbb{E}[\| \cdot \|_2] = \sqrt{d},$$

where the second equality follows from Cauchy-Schwarz. For the Gaussian complexity, we use Jensen's inequality and receive

$$\mathcal{G}(B_2^d) = \mathbb{E}[\|\cdot\|_2] \le \sqrt{\mathbb{E}[\|w\|_2^2]} = \sqrt{d},$$

which shows that $\mathcal{R}(B_2^d) \geq \mathcal{G}(B_2^d)$. $\mathcal{G}(B_2^d) = \sqrt{d}(1 - o(1))$.

References

[W] M. WAINWRIGHT, "High-dimensional statistics: A non-asymptotic viewpoint", 2019.