7
Splitting the Sample

In the previous chapters the parameters of the estimates with the opti-
mal rate of convergence depend on the unknown distribution of (X,Y),
especially on the smoothness of the regression function. In this and in
the following chapter we present data-dependent choices of the smoothing
parameters. We show that for bounded Y the estimates with parameters
chosen in such an adaptive way achieve the optimal rate of convergence.

7.1 Best Random Choice of a Parameter

Let D, = {(X1,Y1),..., (X, Y,)} be the sample as before. Assume a finite
set Q,, of parameters such that for every parameter h € Q,, there is a
regression function estimate m%h)(-) = m%h)(',Dn). Let h = h(D,) € Q,
be such that

[ 1P (@) = m@)Pa(d) = min [ (m? @) - m(o)u(do),

where h is called the best random choice of the parameter. Obviously, h is
not an estimate, it depends on the unknown m and u.

This best random choice can be approximated by splitting the data. Let
D,, = {(X1,Y1),...,(Xn,,Yn,)} be the learning (training) data of size
n; and D,\D,, the testing data of size n; (n = n; + n; > 2). For every
parameter h € Q,, let m,SZ}) (1) = m%) (-, Dy,) be an estimate of m depending
only on the learning data D,,, of the sample D,,. Use the testing data to
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choose a parameter H = H(D,,) € Q,:

1 nyi+ng 1 nyi+ne

ID(X,;) - Yi]* = min — M(x) -y (11
m 7 i min m i
) i:%:ﬂl (X5) | o - i:%;l\ (Xi) =Yil". (7.1)

Define the estimate by
my(z) = my(x, Dy) = mgl)(a:, D,,). (7.2)

We show that H approximates the best random choice h in the sense that
E [ |m,(z) — m(z)>u(dz) approximates E [ |[m4? (z) — m(z)|2u(dz).

Theorem 7.1. Let 0 < L < co. Assume
Y| <L a.s. (7.3)
and

juax ||m(h)||OO <L a.s. (7.4)

Then, for any § > 0,
/ i (z) = m(a) ()

(1+6)E / m) (2) — m(a)Pralde) + 128ULnl) (7 5

Uz
where h = h(Dy,) and ¢ = L*(16/5 + 35 4 195).

The only assumption on the underlying distribution in Theorem 7.1 is
the boundedness of |Y| (cf. (7.3)). It can be applied to any estimate which
is bounded in supremum norm by the same bound as the data (cf. (7.4)).
We can always truncate an estimate at &L, which implies that (7.4) holds.
If (7.3) holds, then the regression function will be bounded in absoulte
value by L, too, and hence the Lo error of the truncated estimate will be
less than or equal to the Lo error of the original estimate, so the truncation
has no negative consequence in view of the error of the estimate.

In the next section we will apply this theorem to partitioning, kernel, and
nearest neighbor estimates. We will choose 9,, and n; such that the second
term on the right-hand side of (7.5) is less than the first term. This implies
that the expected Lo error of the estimate is bounded by some constant
times the expected Lo error of an estimate, which is applied to a data set
of size n; (rather than n) and where the parameter is chosen in an optimal
way for this data set. Observe that this is not only true asymptotically, but
true for each finite sample size.

PROOF OF THEOREM 7.1. An essential tool in the proof will be Bernstein’s
inequality together with majorization of a variance by some constant times
the corresponding expectation. This will yield the denominator n; in the
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result instead of /n; attainable by the use of Hoeffding’s inequality (cf.
Problem 7.2).
We will use the error decomposition

B{ [ lmale) — m(e)utao) D,y

= Ty, +Ton,,
where
T, = E {m{{0(X) = Y*| Dy, } — Elm(X) = Y| = T
and
1 ny+nyg
Top=(1+0)— > (Im{P(x) = YiP = Im(X) = ¥if?).
g
i=n;+1
Because of (7.1),
1 np+ne
Top < (14+6)— S (ImP (X)) = ¥if* = [m(X;) = Yil}),
it i=n;+1

hence,

2\, |~ Bim(x) - VP

E{Ty,|Dn} < <1+5>( {|m<h>< -

= (145) [ (@) - mla) Puda).
In the sequel we will show
1+1 n
E{Tl,n‘Dnl} < C(—i_?lﬂv (76)
t

which, together with the inequality above, implies the assertion. Let s > 0
be arbitrary. Then

P{T1n > 5D, }

= P{(l +9) (E{|m(H)( ) = Y|*|Dn,} — Elm(X) - Y|*

Z{|m<H> _vp- |m<X1~>—Yi|2})

i=n;+1
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> 5+ 8 (B{m{(X) = Y |Dy, } — Elm(X) - Y ?) \D}

. P{HheQ  E{m® (X) — YDy} — Blm(X) - V]2

n

1 3 {\m(h)(X) i — |m(Xz-)—Yi|2}

L ——)
ppp)

< |9 }{IelaQX P{{E {\mg;)(X) — Y]2|Dm} —Em(X) — Y‘Z

> 115 (5 0B { Il () = Y~ m(x) -

n

Y {mien) v - ) - vk} |

it i=n;+1
2 Dm}) ‘Dm}.

1 2
> 155 (s+5E{|m<h>( )= Y2 — |m(X) —

Fix h € Q,,. Set
Z = |m{N(X) =Y - |jm(X) - Y|?

and

Zi = |m£7ib) (an-l-i) - Ynz+i|2 - |m(Xm+i) - nz+1|2 (l =1,...,n— nl)'

Using Bernstein’s inequality (see Lemma A.2) and

o? = Var{Z|D,,}
E{Z"|Dy,}

IN

~ B[ x0)-) - ) -1

< mf® () ) + (m(x) - v)|

IN

o)
167 [ fml) (@) — m(e) ()
= 16L°E{Z|D,,} (7.7)

we get
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{{E{|m<h>< )~ Y2 Do} — Elm(X) — Y]?

Z{Im(’” _yp- |m<Xz->—Yz-|2}}

1=n;+1
o))l

1 & 1
=P {E{Z!Dnl} - Zzi > T3 (s+0-E{Z|Dy,}) ‘Dm}
=1

1 & 1 o2
<P {E{Z|Dm} - n—tZZi 2105 (3+5. 16L2> ‘Dm}
=1

2
(1+16)2 (S + 516L2>

202 + 285 (s + 038>

Here we don’t need the factor 2 before the exponential term because we
don’t have absolute value inside the probability (cf. proof of Lemma A.2).
Next we observe

1
> E{ |mM(X) - Y] — jm(X) —
_1+5(8+5 {!mm( ) = Y7 = [m(X)

<exp | —ng

2
(1+16)2 (S + 516L2>

202 % éngLr(S (3 +0 16L2)

52 —|—23(516L2
Z 16 72 2 1 :
LL2(1+6)s + 0% (2(1+0)% + 56(1 +0))

An easy but tedious computation (cf. Problem 7.1) shows

52 —|—23516L2 s
> - 7.8
1—36L2(1—|—(5)8—|—0'2( (1+6)%+ 1(5(1+5)) —c (78)

where ¢ = L?(16/3 + 35 + 195). Using this we get that
s
P {Tin > 5|Du} < |Qulexp (=i )

It follows, for arbitrary w > 0,

E{T\,.|D,} < u+/ P{Ti, > s|Dy,} ds

C

Uz

%, this implies (7.6), which in turn implies the assertion.
t

|

Setting u =



