36-752, Spring 2018 Homework 1

Due Thu Feb 15, by 5:00pm in Jisu's mailbox.

1. Limits superior and inferior.

- (a) Let A_n be $(-1/n, 1]$ if n is odd and $(-1, 1/n]$ if n is even. Find lim sup_n A_n and $\liminf_n A_n$.
- (b) **Bonus Problem**. Let A_n the interior of the ball in \mathbb{R}^2 with unit radius and center $\left(\frac{(-1)^n}{n}\right)$ $\left(\frac{1}{n}\right)^n$, 0). Find $\limsup_n A_n$ and $\liminf_n A_n$.
- (c) Show that $\liminf_n A_n \subseteq \limsup_n A_n$
- (d) Show that $(\limsup_n A_n)^c = \liminf_n A_n^c$ and $(\liminf_n A_n)^c = \limsup_n A_n^c$.
- 2. Let A be a collection of subsets of Ω . Let F be the intersection of all σ -fields that include A as a subset. Show that F is also a σ -field and it is the smallest σ -field that includes A as a subset.
- 3. Exercise 6 in Lecture Notes Set 1. Let $\mathcal{F}_1, \mathcal{F}_2, \ldots$ be classes of sets in a common space Ω such that $\mathcal{F}_n \subset \mathcal{F}_{n+1}$ for each n. Show that if each \mathcal{F}_n is a field, then $\bigcup_{n=1}^{\infty} \mathcal{F}_n$ is also a field.

If each \mathcal{F}_n is a σ -field, then $\bigcup_{n=1}^{\infty} \mathcal{F}_n$ is not necessarily a σ -field. Think about the following case: Ω is the set of nonnegative integers and \mathcal{F}_n is the σ -field of all subsets of $\{0, 1, \ldots, n\}$ and their complements.

Hint: You can prove this in more than one way. For instance show that the set of even numbers can be obtained as a countable unions of sets in $\bigcup_n \mathcal{F}_n$ but it cannot belong to $\bigcup_n \mathcal{F}_n$. Alternatively, show that the smallest σ -field containing $\bigcup_n \mathcal{F}_n$ must contain uncountably many sets but $\bigcup_n \mathcal{F}_n$ is countable.

- 4. Let μ be a counting measure on an infinite set Ω . Show that there exists a decreasing sequence of sets A_n such that $A_n \downarrow \emptyset$ but $\lim_n \mu(A_n) \neq 0$. (This should help addressing Exercise 13 in the lecture notes).
- 5. If μ_1, μ_2, \ldots are all measures on (Ω, \mathcal{F}) and if $\{a_n\}_{n=1}^{\infty}$ is a sequence of positive numbers, then $\sum_{n=1}^{\infty} a_n \mu_n$ is a measure on (Ω, \mathcal{F}) .
- 6. Let A_1, \ldots, A_n be arbitrary subsets of Ω . Describe as explicitly as you can \mathcal{F}_n , the smallest σ -field containing them. Give a non-trivial upper bound on the cardinality of \mathcal{F}_n . List all the elements of \mathcal{F}_2 .
- 7. Let μ be a finite measure on $(\mathbb{R}, \mathcal{B})$ and, for any $x \in \mathbb{R}$, set $F(x) = \mu((-\infty, x])$. Show that F is cádlág.
- 8. Let $f: \Omega \to S$. Show that, for arbitrary subsets A, A_1, A_2, \ldots of S,

(a) $f^{-1}(A^c) = (f^{-1}(A))^c$; (b) $f^{-1}(\cup_n A_n) = \bigcup_n f^{-1}(A_n)$ and (c) $f^{-1}(\cap_n A_n) = \bigcap_n f^{-1}(A_n)$.

(The last two identities actually hold also for uncountable unions and intersections). Let A be a σ -field over S. Prove that the collection $f^{-1}(\mathcal{A}) = \{f^{-1}(A), A \in \mathcal{A}\}\$ of subsets of Ω is a σ -field over Ω (in fact, the smallest σ -field on Ω that makes f measurable).

- 9. Let (Ω, \mathcal{F}) be a measurable space and $\{f_n\}_{n=1,2,\dots}$ be a sequence of real valued measurable function on Ω . Show that the set $\{\omega \in \Omega: \lim_{n} f_n(\omega)$ exists} is measurable (i.e. it belongs to \mathcal{F}).
- 10. (The induced measure is a measure) Let $(\Omega, \mathcal{F}, \mu)$ be a measure space, (S, \mathcal{A}) a measurable space and $f: \Omega \to S$ a measurable function. Show that the measure induced by f and μ , i.e. the function ν over A given by

$$
A \mapsto \mu\left(f^{-1}(A)\right), \quad A \in \mathcal{A},
$$

is a measure. Show by example that ν need not be σ -finite if μ is σ -finite.