36-752, Spring 2018
Homework 1 Solution

Due Thu Feb 15, by 5:00pm in Jisu’s mailbox.

Points: 10045 pts total for the assignment.

1. Limits superior and inferior.
(a) Let A, be (=1/n,1] if n is odd and (—1,1/n] if n is even. Find limsup,, A,, and
liminf,, A,.
(b) Bonus Problem. Let A, the interior of the ball in R? with unit radius and
center (ﬂ, O). Find limsup, A, and liminf, A,,.

(¢) Show that liminf, A, C limsup, A,
(d) Show that (limsup, A,)° = liminf, A¢ and (liminf, A,)° = limsup,, A.

Points: 10 + 5 pts =4+ 5+ 3 + 3.

Solution.

(a)

Note that for any k € N, A, U Ay41 = (—1,1]. Hence |, Ay = (—1,1] for all
n € N, and hence

limsup A, = () [J 4 = [)(~1,1] = (=1, 1].

n=1k=n n=1

Also, note that for any m € N (2 Ag—y = [0,1] and (), Aoy = (—1,0].
Hence (-, Ax = {0} for any n € N, and hence

limninf A, = [j ﬁ Ay = G{O} = {0}.
n=1k=n n=1

(b)
Let D :={z € R*: |jz]|s < 1} and B := {z = (z1,75) € R?: ||z|2 = 1, 2, # 0}.
We will show that liminf,, A, = D and limsup,, A, = D U B.

For liminf,, A,, note that z € liminf,, A, if and only if x € A,, for all but finite n.
Suppose z € D. Then ||z]|> < 1, so choose N large enough so that & < 1 — ||z

Then for all n > N,
—1)" —1)"
o= (550, = et | (550)
n 9 n
el ~ < Jlzfly + = < 1
— —_ xr e .
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Then =z € A, for all n > N, and hence z € liminf, A,, which implies D C
liminf, A,. Now, suppose = ¢ D and z; > 0. Then for all odd n,

R

Hence = ¢ A, for all odd n, and hence x ¢ liminf, A,. Similarly, when z ¢ D
and x; <0, then x ¢ A, for all even n, and hence z ¢ liminf, A,. These imply
liminf,, A,, C D, and hence

> [[(z1; 22)ll, = 1,
2

liminf A,, = D.

For limsup, A,, note that x € limsup,, A, if and only if x € A, for infinitely
many n. Suppose x € DU B. We have already shown that D = liminf, A, C
limsup,, A,,, and hence if € D then x € limsup,, A,,. Now, suppose x € B and
z1 > 0. Then [|z]|; = 1. Choose N large enough so that + < |z;|. Then for all
even n with n > N, !xl — %‘ < |z1|, and hence

- (550l = -5

< |[(z1, 22l = 1.
Hence x € A, for all even n with n > N, and hence z € limsup,, A,,. Similarly,
when z € B and 27 < 0, x € A, for all odd n with n > N, and hence x €
limsup,, A,,. These imply that D U B C limsup,, 4,,. Now, suppose = ¢ D U B.
Then ||z]|s > 1 or x = (0,£1). When ||lz| > 1, choose N large enough so that
%~ < 1—|z/|2. Then for all n > N,

- (5ol 2 | (50)

lzll, — = > flall, ~ 5 > 1
= ||z, — — x|, — = :
2 n = 2 N
Then = ¢ A, for all n with n > N, and hence x ¢ limsup,, A,. Also, when
x = (0,+£1), then for all n,
_1)»
-[(-55=)
) n

2

2

1
n

—1)n
- (55
n
Then z ¢ A, for all n, and hence = ¢ limsup,, A,. These show limsup,, A, C
D U B, and hence

2

limsup A, = DU B.

()



Note that for all m,n € N,

ﬂ Ak - Amax{m,n} - U Ak:

k=m k=n
Hence for all n € N,
liminf A, = | ) () 4 € | 4«
" m=1k=m k=n
holds, and hence

limninf A, C ﬁ [OJ A = limsup A,.

n=1k=n

(d)

By applying De Morgan’s law,

C 0o o0 C 00 00 C 0o o0
(limsup An) = (ﬂ U Ak> = U (U Ak> = U m A% = lim inf AEL.
n k=n "

n=1k=n n=1 n=1k=n
Similarly,
<limiann> - (ﬂ U Ak> - (U Ak> = [J ) 48 = liminf A,
n=1k=n = k=n n=1k=n

2. Let A be a collection of subsets of €. Let F be the intersection of all o-fields that
include A as a subset. Show that F is also a o-field and it is the smallest o-field that
includes A as a subset.

Points: 10 pts.

Solution.

Let o :={G C2%: Gis o-field, A C G}, and let F =, G.

We will first show that F is a o-field. First, (2 € G for any o-field G, and hence
Q € F as well. Second, if A € F, then A € G for all G € &/. Then from G being a
o-field, A% € G for all G € o7, and hence A% € F. Third, suppose {4,}>, C F,
then {A4,}72, C G for all G € /. Then from G being a o-field, |J,, A, € G for all
G € &/, and hence |J,, A, € F as well. Hence F is a o-field.

Now, note that A C G for all G € &7, and hence A C F, and F is a o-field with
A C F. Also, for any G: o-field with A € G. Then G € &/, and hence F C G.
Hence F is the smallest o-field that includes A as a subset.



3. Exercise 6 in Lecture Notes Set 1.
Let Fi, Fo,... be classes of sets in a common space €2 such that F, C F,,; for each
n. Show that if each F,, is a field, then US° | F,, is also a field.

If each F,, is a o-field, then U | F, is not necessarily a o-field. Think about the
following case: € is the set of nonnegative integers and F,, is the o-field of all subsets
of {0,1,...,n} and their complements.

Hint: You can prove this in more than one way. For instance show that the set of even
numbers can be obtained as a countable unions of sets in |, F,, but it cannot belong
to U, Fn. Alternatively, show that the smallest o-field containing |, F,, must contain
uncountably many sets but |J,, F,, is countable.

Points: 10 pts.

Solution.

We will first show that J, F, is a field. First, Q € F, for any n, and hence
Q e, Fn. Second, if A € |, F,, then there exists n € N with A € F,,. Then
from F,, being a field, A® € F,, and hence Ab € U,, Fn as well. Third, suppose
A, B €|, Fn. Then there exists m,n € N with A € F,, and B € F,,. Then from
Finy Fo C Fax{mmny» A B € Frax{mn} as well. Then from Fraxfmny being a field,
AU B € Fuax{mn}, and hence AU B € \U,, Fn as well. Hence |, F,, is a field.
For counterexample for o-field, let [n] := {1,...,n}, and let F,, := {A C N :
either A C [n] or N\A C [n]}. Then F, is o-field. First, N\N = () C [n], and
hence N € F,. Second, if A € F,,, then either A C [n] or N\A C [n], and then A®
satisfies either N\A® = A  [n] or A® = N\A C [n], and hence A® € F,,. Third, if
{An}_; C F,, then there are two cases: if A,, C [n] for all m, then |J,, A,,, C [n]
as well, and hence |J,, A,,, € F,. If there exists m such that N\ A4,, C [n], then
N\(U,, An) € N\A4,, C [n], and hence | J,, A, € F,. Hence, F, is a o-field. Also,
A C [n] or N\A C [n] implies A C [n+1] or N\A C [n+1], and hence F,, C Fp41.
Now, consider A,, = {2m} for m € N, so that J,, A, = {2,4,...}. Then A,, €
Fom C U,, Fm for all m € N. However, if we assume that |J,, A, € |, Fn, then
there exists a finite n such that J,, A,, € F,,. This implies that either J,, A, =
{2,4,...} C [n] or N\(U,, Am) = {1,3,...} C [n]. But this is impossible since
both |J,, Am and N\(U,, A) are infinite sets. Hence J,, A ¢ U,, Fn, and hence
U,, F» is not a o-field.

4. Let p be a counting measure on an infinite set 2. Show that there exists a decreasing
sequence of sets A,, such that A, | 0 but lim,, u(A,) # 0. (This should help addressing
Ezercise 13 in the lecture notes).

Points: 10 pts.

Solution.



Since 2 is infinite, there exists an injective function f : N — Q. Let A, :=
{f(m) € @: m € Nym > n}. Then A, D A,11. Also, A, C f(N) :={f(m) €
Q: m € N}, and for any f(m) € f(N), f(m) ¢ A, for n > m, and hence
A, | 0. However, all A,’s are infinite sets, so u(A,) = oo for all n, and hence

lim,, 00 p1(Ay,) = 00 # 0.

5. If py, pio, . . . are all measures on (2, F) and if {a,, }22 ; is a sequence of positive numbers,
then "7 | a,u, is a measure on (€2, F).

Points: 10 pts.

Solution.

We check whether Y >° | a,u, is a measure. First, for any A € F, p,(A) > 0 from
[ty being a measure and a,, > 0 for all n, and hence

(Z anﬂﬂ) (A) = Zanﬂn(A) > 0.

Second, for all n € N, p,,(#) = 0 from g, being a measure, and hence

(Z an”n) () = anpa(0) = 0.

n=1

Third, let Ay, Ao, ... be disjoint sets in F. Then from countable additivity of each
i and Fubini’s theorem,

() (04) (0

n=1 m=1 n=1

n Z tn(Ay) (countable additivity)

[
b@ﬂg

Hence countable additivity holds for 27010:1 anpt, as well. And hence 220:1 G fln,
is a measure.

6. Let Aq,..., A, be arbitrary subsets of 2. Describe as explicitly as you can F,, the
smallest o-field containing them. Give a non-trivial upper bound on the cardinality of
F,. List all the elements of Fs.

Points: 10 pts.



Solution.

For any w € {—1,1}" so that w; is either —1 or 1, let A, := ( N Ai> N

tw; =1

( N AE) And for any I c 2{=1" et A; = Uper Aw- And let

tw;=—1
G,:={A;: I ca2t=1"}
= {Aw(l) U---UA,m : w) e {—17 1}"} .
Note that if we let I; := {w e {~1,1}": w; =1}, then A; = A; and Al =
Ag-1aynyg,- Also, all A, are disjoint.

We first show that G, is a o-field. First, fix any ¢ € I, then from A; = A;, and
A’[L: - AQ{fl,l}"\L’,,

Q= AZ U AE = A]i U A2{—1»1}n\1i = AQ{—1,1}n € gn

Second, for any w € {—1,1}", let I, := 2{-11"\{w}, then A® = A; , and hence
if A; € G, then from A,’s being disjoint,

Al = (UAM)BHAEJ

wel wel
- ﬂ A]w - AanI L, € G-
wel

Third, if {A,,};°, C G,, then
UAs =Ayz, 5, €Gn
i=1

Hence G, is a o-field. Also, suppose F is a o-field containing Aq,..., A,. Then
since o-field is closed under finite intersection and union, G, C F. Hence G, is
the smallest o-field containing Ay, ..., A,, i.e.

Fo=Gn={Ar: I c2t-t0"}.
Then, since [2{~11"| = 22",
|l < 27"
This bound is actually strict: suppose Q2 = {—1,1}"and A; = {w € {—1,1}": w; = 1}.
Then for any w € {-1,1}", A, = ( N Ai) N ( N AE) = {w}, hence A,
1

tiwi=1 LW =—
are all disjoint singleton sets. And hence for each I c 251" corresponding
Ar =, Au's are all different as well, and hence |F,| = 2%" for this case.
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From the above construction, J, consists of arbitrary numbers of unions from
A; N Ay, Ay N AS AT N Ay, AS 1 AS. The numbers range from 0 to 4. Taking 0
union only gives (), and 1 union gives themselves. Taking 2 unions gives A;, A,
A AC (A NASU(ABN Ay), (AN Ay)U(ABNAD). Taking 3 union gives A; U Ay,
A UAS ABU Ay, AU AD. And taking 4 union gives Q. Hence F, can be enlisted
as

Fo={0,A; N Ay, A N A5, AP N Ay, AS 0 AT,
Ay, Ay, AS AS (A N AS U (AP N Ay), (AN Ay) U (A8 N 4D,
Ay UAy Ay UAS AS U A, AS U AL Q).

7. Let p be a finite measure on (R, B) and, for any x € R, set F'(z) = u((—o0, z]). Show
that F'is cadlag.

Points: 10 pts.

Solution.

We need to check that for all x € R, the left limit lim,, F'(y) exists, and the
right limit lim,|, F'(y) exists and equals F(z). For the left limit, we first show
limy, o0 F (2 — 1) = p((—o0,z)). Note that {(—oco,z — 1] }:;1 is a monotoni-

cally increasing sequence and lim,, ., (—oo, xr — ﬂ = (—o00, ), and hence from
monotonicity of the measure,

lim F(:c—l) = lim u((—oo,x—l}>
n—00 n n—00 n
(t (e
=up( lim ( —oo,z — —
n—00 n

= p((=00,7)).

Now, from F' being non-decreasing function, liminf ., F(y) > F (m — %) for any
n € N, and hence liminfy, F(y) > limy o F (2 — 1) = p((—o0,z)). Also

for all y < x, F(y) = pu((—00,y]) < p((—o0,2)), and hence limsup,,, F(y) <
p((—o0,)). And hence

lim F(y) = liminf F(y) = limsup F(y) = p ((—o0,)),
ylz ylz vz
and hence the left limit lim,, F(y) exists.
Similarly for the right limit, we first show lim,,_,o, F' (a: + %) = F(x). Note that
{ (—oo, x4+ %] }:;1 is a monotonically increasing sequence and lim,,_,, (—oo, x4+ ﬂ =
(—o0, x], and note that p ((—oo, x + 1]) < oo from the finiteness of u. Hence from



monotonicity of the measure,

1 1
lim F (x—i— —) = lim u ((—oo,x+ —})
n—00 n n—o00 n

Now, from F' being non-decreasing function, limsup,,, F(y) < F (x + %) for any
n € N, and hence limsup,, |, F'(y) < lim,, o F (:1: + %) = F(x). Also for ally > z,
F(y) = p((—o0,y]) < p((—o00,z]) = F(z), and hence liminf,, F(y) > F(z). And
hence

lim F(y) = liminf F(y) = limsup F(y) = F(z),

and hence the right limit lim,, F'(y) exists and equals F'(x).

8. Let f:Q — S. Show that, for arbitrary subsets A, Ay, As, ... of S,

(a) f7H(AR) = (f7H(A))F
(b) FHUA,) =, f'(A,) and
(c) f~HMA) =N, [~ (An).

(The last two identities actually hold also for uncountable unions and intersections).

Let A be a o-field over S. Prove that the collection f~'(A) = {f~1(A),A € A}
of subsets of Q is a o-field over Q (in fact, the smallest o-field on € that makes f
measurable).

Points: 10 pts =2 + 2 + 2 + 4.

Solution.
Note that w € f~1(A) if and only if f(w) € A.

(a)
we [7HAY) and w € (f71(A))¢ are equivalent as
we (A = fw)eA
— flw)¢gA
= wd [T1(A)
— we ([

And hence f1(A) = (f~1(A))C.
(b)



we 71U, A) and w e, f1(A,) are equivalent as

we f! <UAn> = flw)elJAn

<= there exists n such that f(w) € A,
<= there exists n such that w € f~'(4,)

= we Uf’l(An).

And hence f~1 (U, 4,) = U, f(An).
()

we 71N, An) and w € ), f1(A,) are equivalent as

we f! (ﬂAn> = f(w) e[ )An

< for all n, f(w) € A,
<= foralln, we f(A4,)

= we ﬂf’l(An).

And hence f71(N, 4n) =N, fH(An).

(d)

We first show that f~'(A) = {f7!1(A), A € A} is a o-field over . First, since
A is a o-field over S, S € A, and hence Q = f~1(S) € f~1(A). Second, for
any f1(A) € f~1(A), A being a o-field and A € A implies A® € A, and hence
(f 7Y (AN = f1(AY) € f~1(A). Third, if {f*(4,)}>, € f~'(A), then A being
a o-field and {A4,}22, C A implies |J, A, € A, which implies |, f~1(4,) =
U, 4n) € f71(A). Hence f~1(A) is a o-field.

Also, let F be the o-field satisfying f to be measurable. Then for all A € A,
f7Y(A) € F from measurability of f, and hence f~1(A) C F. Hence f~(A) is
indeed the smallest o-field on () that makes f measurable.

9. Let (2, F) be a measurable space and {f,}n-12,. be a sequence of real valued mea-
surable function on €. Show that the set {w € Q : lim, f,(w) exists} is measurable
(i.e. it belongs to F).

Points: 10 pts.

Solution.



Note that if {f,}>°, are measurable functions, then for all n, inf;>,{fx} is a
measurable function, and hence liminf, f, = sup, infy>,{fx} is a measurable
function as well. Similarly, lim sup,, f,, = inf, sup,,,{fx} is a measurable function
as well. Now, note that -

{weQ: liin fo(w) exists} = {w € Q- lirr%linf fn(w) =limsup f,(w)}
= (limsup f, — liminf f,)~({0}).

Since both liminf, f, and limsup, f, are measurable functions, limsup, f, —
liminf, f,, is a measurable function as well. And {0} is a Borel set, and hence
(lim sup,, f, — liminf, f,)~'({0}) is a measurable set in €.

10. (The induced measure is a measure) Let (2, F, 1) be a measure space, (S,.A)
a measurable space and f : 0 — S a measurable function. Show that the measure
induced by f and pu, i.e. the function v over A given by

A p(f7H(A4), Ae€A,

is a measure. Show by example that v need not be o-finite if p is o-finite.

Points: 10 pts.

Solution.

We check whether v is a measure. First, for any A € A, v(A) = u(f~1(A)) >
0.Second, since f~1(0) = 0, v(0) = u(f~1(0)) = u(0) = 0. Third, let {A,}>>, C
A be disjoint sets in A, then since

f_l(Am) n f_l(An) = f_l(Am N An) = f_l((b) =0,
{f71(A,)}>2, are disjoint sets in F as well. Hence by using countable additivity

of p,
(09) o (00)) (0

= Zﬂ(f_l(An)) = ZV(An)‘

n=1 n=1

Hence countable additivity holds for v as well. And hence v is a measure.

Let f: N — {0} be defined as f(z) = 0 for all z € N, (N, 2" 1) be such that u
is a counting measure on N, and v be the induced measure on ({0},2{%). Then
{{n}}s2, is a countable subset of N such that J, {n} = N and p({n}) =1 < o0,
hence p is a o-finite measure. However,

v({0}) = p(f({0})) = n(N) = oo,

10



and hence v has an infinite mass on a singleton set {0}. Then for any countable
subset A,, C {0} with J,, A,, = {0}, there exists 4, D {0}, and v(4,) > v({0}) =
oo. Hence v cannot be o-finite.

11



