36-752, Spring 2018 Homework 1 Solution

Due Thu Feb 15, by 5:00pm in Jisu's mailbox.

Points: 100+5 pts total for the assignment.

1. Limits superior and inferior.

- (a) Let A_n be (-1/n, 1] if n is odd and (-1, 1/n] if n is even. Find $\limsup_n A_n$ and $\lim_n A_n$.
- (b) **Bonus Problem**. Let A_n the interior of the ball in \mathbb{R}^2 with unit radius and center $\left(\frac{(-1)^n}{n}, 0\right)$. Find $\limsup_n A_n$ and $\liminf_n A_n$.
- (c) Show that $\liminf_n A_n \subseteq \limsup_n A_n$
- (d) Show that $(\limsup_n A_n)^c = \liminf_n A_n^c$ and $(\liminf_n A_n)^c = \limsup_n A_n^c$.

Points: 10 + 5 pts = 4 + 5 + 3 + 3.

Solution.

(a)

Note that for any $k \in \mathbb{N}$, $A_k \cup A_{k+1} = (-1, 1]$. Hence $\bigcup_{k=n}^{\infty} A_k = (-1, 1]$ for all $n \in \mathbb{N}$, and hence

$$\limsup_{n} A_{n} = \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_{k} = \bigcap_{n=1}^{\infty} (-1, 1] = (-1, 1].$$

Also, note that for any $m \in \mathbb{N} \bigcap_{k=m}^{\infty} A_{2k-1} = [0,1]$ and $\bigcap_{k=m}^{\infty} A_{2k} = (-1,0]$. Hence $\bigcap_{k=n}^{\infty} A_k = \{0\}$ for any $n \in \mathbb{N}$, and hence

$$\liminf_{n} A_{n} = \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_{k} = \bigcup_{n=1}^{\infty} \{0\} = \{0\}.$$

(b)

Let $D := \{x \in \mathbb{R}^2 : \|x\|_2 < 1\}$ and $B := \{x = (x_1, x_2) \in \mathbb{R}^2 : \|x\|_2 = 1, x_1 \neq 0\}$. We will show that $\liminf_n A_n = D$ and $\limsup_n A_n = D \cup B$.

For $\liminf_n A_n$, note that $x \in \liminf_n A_n$ if and only if $x \in A_n$ for all but finite n. Suppose $x \in D$. Then $||x||_2 < 1$, so choose N large enough so that $\frac{1}{N} < 1 - ||x||_2$. Then for all $n \ge N$,

$$\left\| x - \left(\frac{(-1)^n}{n}, 0 \right) \right\|_2 \le \|x\|_2 + \left\| \left(\frac{(-1)^n}{n}, 0 \right) \right\|_2$$
$$= \|x\|_2 + \frac{1}{n} \le \|x\|_2 + \frac{1}{N} < 1$$

Then $x \in A_n$ for all $n \geq N$, and hence $x \in \liminf_n A_n$, which implies $D \subset \liminf_n A_n$. Now, suppose $x \notin D$ and $x_1 \geq 0$. Then for all odd n,

$$\left\|x - \left(\frac{(-1)^n}{n}, 0\right)\right\|_2 = \left\|\left(x_1 - \frac{1}{n}, x_2\right)\right\|_2 > \|(x_1, x_2)\|_2 \ge 1,$$

Hence $x \notin A_n$ for all odd n, and hence $x \notin \liminf_n A_n$. Similarly, when $x \notin D$ and $x_1 \leq 0$, then $x \notin A_n$ for all even n, and hence $x \notin \liminf_n A_n$. These imply $\liminf_n A_n \subset D$, and hence

$$\liminf_{n} A_n = D.$$

For $\limsup_n A_n$, note that $x \in \limsup_n A_n$ if and only if $x \in A_n$ for infinitely many n. Suppose $x \in D \cup B$. We have already shown that $D = \liminf_n A_n \subset$ $\limsup_n A_n$, and hence if $x \in D$ then $x \in \limsup_n A_n$. Now, suppose $x \in B$ and $x_1 > 0$. Then $||x||_1 = 1$. Choose N large enough so that $\frac{1}{N} < |x_1|$. Then for all even n with $n \ge N$, $|x_1 - \frac{1}{n}| \le |x_1|$, and hence

$$\left\| x - \left(\frac{(-1)^n}{n}, 0\right) \right\|_2 = \left\| \left(x_1 - \frac{1}{n}, x_2 \right) \right\|_2$$

< $\| (x_1, x_2) \|_2 = 1.$

Hence $x \in A_n$ for all even n with $n \ge N$, and hence $x \in \limsup_n A_n$. Similarly, when $x \in B$ and $x_1 < 0$, $x \in A_n$ for all odd n with $n \ge N$, and hence $x \in \limsup_n A_n$. These imply that $D \cup B \subset \limsup_n A_n$. Now, suppose $x \notin D \cup B$. Then $||x||_2 > 1$ or $x = (0, \pm 1)$. When $||x||_2 > 1$, choose N large enough so that $\frac{1}{N} < 1 - ||x||_2$. Then for all $n \ge N$,

$$\left\| x - \left(\frac{(-1)^n}{n}, 0 \right) \right\|_2 \ge \|x\|_2 - \left\| \left(\frac{(-1)^n}{n}, 0 \right) \right\|_2$$
$$= \|x\|_2 - \frac{1}{n} \ge \|x\|_2 - \frac{1}{N} > 1$$

Then $x \notin A_n$ for all n with $n \geq N$, and hence $x \notin \limsup_n A_n$. Also, when $x = (0, \pm 1)$, then for all n,

$$\left\| x - \left(\frac{(-1)^n}{n}, 0\right) \right\|_2 = \left\| \left(-\frac{(-1)^n}{n}, \pm 1\right) \right\|_2 = \sqrt{1 + \frac{1}{n^2}} > 1,$$

Then $x \notin A_n$ for all n, and hence $x \notin \limsup_n A_n$. These show $\limsup_n A_n \subset D \cup B$, and hence

$$\limsup_{n} A_n = D \cup B.$$

(c)

Note that for all $m, n \in \mathbb{N}$,

$$\bigcap_{k=m}^{\infty} A_k \subset A_{\max\{m,n\}} \subset \bigcup_{k=n}^{\infty} A_k.$$

Hence for all $n \in \mathbb{N}$,

$$\liminf_{n} A_{n} = \bigcup_{m=1}^{\infty} \bigcap_{k=m}^{\infty} A_{k} \subset \bigcup_{k=n}^{\infty} A_{k}$$

holds, and hence

$$\liminf_{n} A_n \subset \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k = \limsup_{n} A_n.$$

(d)

By applying De Morgan's law,

$$\left(\limsup_{n} A_{n}\right)^{\complement} = \left(\bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_{k}\right)^{\complement} = \bigcup_{n=1}^{\infty} \left(\bigcup_{k=n}^{\infty} A_{k}\right)^{\complement} = \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_{k}^{\complement} = \liminf_{n} A_{n}^{\complement}$$

Similarly,

$$\left(\liminf_{n} A_{n}\right)^{\complement} = \left(\bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_{k}\right)^{\complement} = \bigcup_{n=1}^{\infty} \left(\bigcup_{k=n}^{\infty} A_{k}\right)^{\complement} = \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_{k}^{\complement} = \liminf_{n} A_{n}^{\complement}$$

2. Let \mathcal{A} be a collection of subsets of Ω . Let \mathcal{F} be the intersection of all σ -fields that include \mathcal{A} as a subset. Show that \mathcal{F} is also a σ -field and it is the smallest σ -field that includes \mathcal{A} as a subset.

Points: 10 pts.

Solution.

Let $\mathscr{A} := \{ \mathcal{G} \subset 2^{\Omega} : \mathcal{G} \text{ is } \sigma \text{-field}, \mathcal{A} \subset \mathcal{G} \}, \text{ and let } \mathcal{F} = \bigcap_{\mathcal{G} \in \mathscr{A}} \mathcal{G}.$

We will first show that \mathcal{F} is a σ -field. First, $\Omega \in \mathcal{G}$ for any σ -field \mathcal{G} , and hence $\Omega \in \mathcal{F}$ as well. Second, if $A \in \mathcal{F}$, then $A \in \mathcal{G}$ for all $\mathcal{G} \in \mathscr{A}$. Then from \mathcal{G} being a σ -field, $A^{\complement} \in \mathcal{G}$ for all $\mathcal{G} \in \mathscr{A}$, and hence $A^{\complement} \in \mathcal{F}$. Third, suppose $\{A_n\}_{n=1}^{\infty} \subset \mathcal{F}$, then $\{A_n\}_{n=1}^{\infty} \subset \mathcal{G}$ for all $\mathcal{G} \in \mathscr{A}$. Then from \mathcal{G} being a σ -field, $\bigcup_n A_n \in \mathcal{G}$ for all $\mathcal{G} \in \mathscr{A}$, and hence \mathcal{F} is a σ -field.

Now, note that $\mathcal{A} \subset \mathcal{G}$ for all $\mathcal{G} \in \mathscr{A}$, and hence $\mathcal{A} \subset \mathcal{F}$, and \mathcal{F} is a σ -field with $\mathcal{A} \subset \mathcal{F}$. Also, for any \mathcal{G} : σ -field with $\mathcal{A} \subset \mathcal{G}$. Then $\mathcal{G} \in \mathscr{A}$, and hence $\mathcal{F} \subset \mathcal{G}$. Hence \mathcal{F} is the smallest σ -field that includes \mathcal{A} as a subset.

3. Exercise 6 in Lecture Notes Set 1.

Let $\mathcal{F}_1, \mathcal{F}_2, \ldots$ be classes of sets in a common space Ω such that $\mathcal{F}_n \subset \mathcal{F}_{n+1}$ for each n. Show that if each \mathcal{F}_n is a field, then $\bigcup_{n=1}^{\infty} \mathcal{F}_n$ is also a field.

If each \mathcal{F}_n is a σ -field, then $\bigcup_{n=1}^{\infty} \mathcal{F}_n$ is not necessarily a σ -field. Think about the following case: Ω is the set of nonnegative integers and \mathcal{F}_n is the σ -field of all subsets of $\{0, 1, \ldots, n\}$ and their complements.

Hint: You can prove this in more than one way. For instance show that the set of even numbers can be obtained as a countable unions of sets in $\bigcup_n \mathcal{F}_n$ but it cannot belong to $\bigcup_n \mathcal{F}_n$. Alternatively, show that the smallest σ -field containing $\bigcup_n \mathcal{F}_n$ must contain uncountably many sets but $\bigcup_n \mathcal{F}_n$ is countable.

Points: 10 pts.

Solution.

We will first show that $\bigcup_n \mathcal{F}_n$ is a field. First, $\Omega \in \mathcal{F}_n$ for any n, and hence $\Omega \in \bigcup_n \mathcal{F}_n$. Second, if $A \in \bigcup_n \mathcal{F}_n$, then there exists $n \in \mathbb{N}$ with $A \in \mathcal{F}_n$. Then from \mathcal{F}_n being a field, $A^{\complement} \in \mathcal{F}_n$, and hence $A^{\complement} \in \bigcup_n \mathcal{F}_n$ as well. Third, suppose $A, B \in \bigcup_n \mathcal{F}_n$. Then there exists $m, n \in \mathbb{N}$ with $A \in \mathcal{F}_m$ and $B \in \mathcal{F}_n$. Then from $\mathcal{F}_m, \mathcal{F}_n \subset \mathcal{F}_{\max\{m,n\}}, A, B \in \mathcal{F}_{\max\{m,n\}}$ as well. Then from $\mathcal{F}_{\max\{m,n\}}$ being a field, $A \cup B \in \mathcal{F}_{\max\{m,n\}}$, and hence $A \cup B \in \bigcup_n \mathcal{F}_n$ as well. Hence $\bigcup_n \mathcal{F}_n$ is a field. For counterexample for σ -field, let $[n] := \{1, \ldots, n\}$, and let $\mathcal{F}_n := \{A \subset \mathbb{N} :$ either $A \subset [n]$ or $\mathbb{N} \setminus A \subset [n]$. Then \mathcal{F}_n is σ -field. First, $\mathbb{N} \setminus \mathbb{N} = \emptyset \subset [n]$, and

either $A \subset [n]$ or $\mathbb{N}\setminus A \subset [n]$ }. Then \mathcal{F}_n is σ -field. First, $\mathbb{N}\setminus\mathbb{N} = \emptyset \subset [n]$, and hence $\mathbb{N} \in \mathcal{F}_n$. Second, if $A \in \mathcal{F}_n$, then either $A \subset [n]$ or $\mathbb{N}\setminus A \subset [n]$, and then A^{\complement} satisfies either $\mathbb{N}\setminus A^{\complement} = A \subset [n]$ or $A^{\complement} = \mathbb{N}\setminus A \subset [n]$, and hence $A^{\complement} \in \mathcal{F}_n$. Third, if $\{A_m\}_{m=1}^{\infty} \subset \mathcal{F}_n$, then there are two cases: if $A_m \subset [n]$ for all m, then $\bigcup_m A_m \subset [n]$ as well, and hence $\bigcup_m A_m \in \mathcal{F}_n$. If there exists m such that $\mathbb{N}\setminus A_m \subset [n]$, then $\mathbb{N}\setminus (\bigcup_m A_m) \subset \mathbb{N}\setminus A_m \subset [n]$, and hence $\bigcup_m A_m \in \mathcal{F}_n$. Hence, \mathcal{F}_n is a σ -field. Also, $A \subset [n]$ or $\mathbb{N}\setminus A \subset [n]$ implies $A \subset [n+1]$ or $\mathbb{N}\setminus A \subset [n+1]$, and hence $\mathcal{F}_n \subset \mathcal{F}_{n+1}$. Now, consider $A_m = \{2m\}$ for $m \in \mathbb{N}$, so that $\bigcup_m A_m = \{2, 4, \ldots\}$. Then $A_m \in$ $\mathcal{F}_{2m} \subset \bigcup_m \mathcal{F}_m$ for all $m \in \mathbb{N}$. However, if we assume that $\bigcup_m A_m \in \bigcup_n \mathcal{F}_n$, then there exists a finite n such that $\bigcup_m A_m \in \mathcal{F}_n$. This implies that either $\bigcup_m A_m =$ $\{2, 4, \ldots\} \subset [n]$ or $\mathbb{N}\setminus (\bigcup_m A_m) = \{1, 3, \ldots\} \subset [n]$. But this is impossible since both $\bigcup_m A_m$ and $\mathbb{N}\setminus (\bigcup_m A_m)$ are infinite sets. Hence $\bigcup_m A_m \notin \bigcup_n \mathcal{F}_n$, and hence $\bigcup_n \mathcal{F}_n$ is not a σ -field.

4. Let μ be a counting measure on an infinite set Ω . Show that there exists a decreasing sequence of sets A_n such that $A_n \downarrow \emptyset$ but $\lim_n \mu(A_n) \neq 0$. (This should help addressing Exercise 13 in the lecture notes).

Points: 10 pts.

Solution.

Since Ω is infinite, there exists an injective function $f : \mathbb{N} \to \Omega$. Let $A_n := \{f(m) \in \Omega : m \in \mathbb{N}, m \ge n\}$. Then $A_n \supset A_{n+1}$. Also, $A_n \subset f(\mathbb{N}) := \{f(m) \in \Omega : m \in \mathbb{N}\}$, and for any $f(m) \in f(\mathbb{N})$, $f(m) \notin A_n$ for n > m, and hence $A_n \downarrow \emptyset$. However, all A_n 's are infinite sets, so $\mu(A_n) = \infty$ for all n, and hence $\lim_{n\to\infty} \mu(A_n) = \infty \neq 0$.

5. If μ_1, μ_2, \ldots are all measures on (Ω, \mathcal{F}) and if $\{a_n\}_{n=1}^{\infty}$ is a sequence of positive numbers, then $\sum_{n=1}^{\infty} a_n \mu_n$ is a measure on (Ω, \mathcal{F}) .

Points: 10 pts.

Solution.

We check whether $\sum_{n=1}^{\infty} a_n \mu_n$ is a measure. First, for any $A \in \mathcal{F}$, $\mu_n(A) \ge 0$ from μ_n being a measure and $a_n \ge 0$ for all n, and hence

$$\left(\sum_{n=1}^{\infty} a_n \mu_n\right)(A) = \sum_{n=1}^{\infty} a_n \mu_n(A) \ge 0$$

Second, for all $n \in \mathbb{N}$, $\mu_n(\emptyset) = 0$ from μ_n being a measure, and hence

$$\left(\sum_{n=1}^{\infty} a_n \mu_n\right)(\emptyset) = \sum_{n=1}^{\infty} a_n \mu_n(\emptyset) = 0$$

Third, let A_1, A_2, \ldots be disjoint sets in \mathcal{F} . Then from countable additivity of each μ_n and Fubini's theorem,

$$\left(\sum_{n=1}^{\infty} a_n \mu_n\right) \left(\bigcup_{m=1}^{\infty} A_m\right) = \sum_{n=1}^{\infty} a_n \mu_n \left(\bigcup_{m=1}^{\infty} A_m\right)$$
$$= \sum_{n=1}^{\infty} a_n \sum_{m=1}^{\infty} \mu_n(A_m) \text{ (countable additivity)}$$
$$= \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} a_n \mu_n(A_m) \text{ (Fubini's theorem)}$$
$$= \sum_{m=1}^{\infty} \left(\sum_{n=1}^{\infty} a_n \mu_n\right) (A_m).$$

Hence countable additivity holds for $\sum_{n=1}^{\infty} a_n \mu_n$ as well. And hence $\sum_{n=1}^{\infty} a_n \mu_n$ is a measure.

6. Let A_1, \ldots, A_n be arbitrary subsets of Ω . Describe as explicitly as you can \mathcal{F}_n , the smallest σ -field containing them. Give a non-trivial upper bound on the cardinality of \mathcal{F}_n . List all the elements of \mathcal{F}_2 .

Points: 10 pts.

Solution.

For any $\omega \in \{-1,1\}^n$ so that w_i is either -1 or 1, let $A_\omega := \left(\bigcap_{i:\omega_i=1} A_i\right) \cap \left(\bigcap_{i:\omega_i=-1} A_i^{\complement}\right)$. And for any $I \subset 2^{\{-1,1\}^n}$, let $A_I = \bigcup_{\omega \in I} A_\omega$. And let $\mathcal{G}_n := \{A_I : I \subset 2^{\{-1,1\}^n}\} = \{A_{\omega^{(1)}} \cup \cdots \cup A_{\omega^{(k)}} : \omega^{(j)} \in \{-1,1\}^n\}.$

Note that if we let $I_i := \{\omega \in \{-1, 1\}^n : \omega_i = 1\}$, then $A_i = A_{I_i}$ and $A_i^{\complement} = A_{2^{\{-1,1\}^n} \setminus I_i}$. Also, all A_{ω} are disjoint.

We first show that \mathcal{G}_n is a σ -field. First, fix any $i \in I$, then from $A_i = A_{I_i}$ and $A_i^{\complement} = A_{2^{\{-1,1\}^n} \setminus I_i}$,

$$\Omega = A_i \cup A_i^{\mathsf{L}} = A_{I_i} \cup A_{2^{\{-1,1\}^n} \setminus I_i} = A_{2^{\{-1,1\}^n}} \in \mathcal{G}_n.$$

Second, for any $\omega \in \{-1,1\}^n$, let $I_{\omega} := 2^{\{-1,1\}^n} \setminus \{\omega\}$, then $A_{\omega}^{\complement} = A_{I_{\omega}}$, and hence if $A_I \in \mathcal{G}_n$, then from A_{ω} 's being disjoint,

$$A_{I}^{\complement} = \left(\bigcup_{\omega \in I} A_{\omega}\right)^{\complement} = \bigcap_{\omega \in I} A_{\omega}^{\complement}$$
$$= \bigcap_{\omega \in I} A_{I\omega} = A_{\bigcap_{\omega \in I} I_{\omega}} \in \mathcal{G}_{n}$$

Third, if $\{A_{J_i}\}_{i=1}^{\infty} \subset \mathcal{G}_n$, then

$$\bigcup_{i=1}^{\infty} A_{J_i} = A_{\bigcup_{i=1}^{\infty} J_i} \in \mathcal{G}_n.$$

Hence \mathcal{G}_n is a σ -field. Also, suppose \mathcal{F} is a σ -field containing A_1, \ldots, A_n . Then since σ -field is closed under finite intersection and union, $\mathcal{G}_n \subset \mathcal{F}$. Hence \mathcal{G}_n is the smallest σ -field containing A_1, \ldots, A_n , i.e.

$$\mathcal{F}_n = \mathcal{G}_n = \left\{ A_I : I \subset 2^{\{-1,1\}^n} \right\}$$

 $|\mathcal{F}_n| < 2^{2^n}.$

Then, since $|2^{\{-1,1\}^n}| = 2^{2^n}$,

This bound is actually strict: suppose $\Omega = \{-1, 1\}^n$ and $A_i = \{\omega \in \{-1, 1\}^n : \omega_i = 1\}$. Then for any $\omega \in \{-1, 1\}^n$, $A_\omega = \left(\bigcap_{i:\omega_i=1} A_i\right) \cap \left(\bigcap_{i:\omega_i=-1} A_i^{\complement}\right) = \{\omega\}$, hence A_ω are all disjoint singleton sets. And hence for each $I \subset 2^{\{-1,1\}^n}$, corresponding $A_I = \bigcup_{\omega \in I} A_\omega$'s are all different as well, and hence $|\mathcal{F}_n| = 2^{2^n}$ for this case. From the above construction, \mathcal{F}_2 consists of arbitrary numbers of unions from $A_1 \cap A_2, A_1 \cap A_2^{\complement}, A_1^{\complement} \cap A_2, A_1^{\complement} \cap A_2^{\complement}$. The numbers range from 0 to 4. Taking 0 union only gives \emptyset , and 1 union gives themselves. Taking 2 unions gives A_1, A_2 , $A_1^{\complement}, A_2^{\complement}, (A_1 \cap A_2^{\complement}) \cup (A_1^{\complement} \cap A_2), (A_1 \cap A_2) \cup (A_1^{\complement} \cap A_2^{\complement})$. Taking 3 union gives $A_1 \cup A_2$, $A_1 \cup A_2^{\complement}, A_1^{\complement} \cup A_2, A_1^{\complement} \cup A_2^{\complement}$. And taking 4 union gives Ω . Hence \mathcal{F}_2 can be enlisted as

$$\mathcal{F}_{2} = \{ \emptyset, A_{1} \cap A_{2}, A_{1} \cap A_{2}^{\complement}, A_{1}^{\complement} \cap A_{2}, A_{1}^{\complement} \cap A_{2}^{\complement}, \\ A_{1}, A_{2}, A_{1}^{\complement}, A_{2}^{\complement}, (A_{1} \cap A_{2}^{\complement}) \cup (A_{1}^{\complement} \cap A_{2}), (A_{1} \cap A_{2}) \cup (A_{1}^{\complement} \cap A_{2}^{\circlearrowright}), \\ A_{1} \cup A_{2}, A_{1} \cup A_{2}^{\complement}, A_{1}^{\complement} \cup A_{2}, A_{1}^{\complement} \cup A_{2}^{\complement}, \Omega \}.$$

7. Let μ be a finite measure on $(\mathbb{R}, \mathcal{B})$ and, for any $x \in \mathbb{R}$, set $F(x) = \mu((-\infty, x])$. Show that F is cádlág.

Points: 10 pts.

Solution.

We need to check that for all $x \in \mathbb{R}$, the left limit $\lim_{y \uparrow x} F(y)$ exists, and the right limit $\lim_{y \downarrow x} F(y)$ exists and equals F(x). For the left limit, we first show $\lim_{n \to \infty} F\left(x - \frac{1}{n}\right) = \mu((-\infty, x))$. Note that $\left\{\left(-\infty, x - \frac{1}{n}\right]\right\}_{n=1}^{\infty}$ is a monotonically increasing sequence and $\lim_{n \to \infty} \left(-\infty, x - \frac{1}{n}\right] = (-\infty, x)$, and hence from monotonicity of the measure,

$$\lim_{n \to \infty} F\left(x - \frac{1}{n}\right) = \lim_{n \to \infty} \mu\left(\left(-\infty, x - \frac{1}{n}\right)\right)$$
$$= \mu\left(\lim_{n \to \infty} \left(-\infty, x - \frac{1}{n}\right)\right)$$
$$= \mu\left((-\infty, x)\right).$$

Now, from F being non-decreasing function, $\liminf_{y\uparrow x} F(y) \ge F\left(x-\frac{1}{n}\right)$ for any $n \in \mathbb{N}$, and hence $\liminf_{y\uparrow x} F(y) \ge \lim_{n\to\infty} F\left(x-\frac{1}{n}\right) = \mu\left((-\infty,x)\right)$. Also for all y < x, $F(y) = \mu\left((-\infty,y]\right) \le \mu\left((-\infty,x)\right)$, and hence $\limsup_{y\uparrow x} F(y) \le \mu\left((-\infty,x)\right)$. And hence

$$\lim_{y \uparrow x} F(y) = \liminf_{y \uparrow x} F(y) = \limsup_{y \uparrow x} F(y) = \mu \left((-\infty, x) \right),$$

and hence the left limit $\lim_{y \uparrow x} F(y)$ exists.

Similarly for the right limit, we first show $\lim_{n\to\infty} F\left(x+\frac{1}{n}\right) = F(x)$. Note that $\left\{\left(-\infty, x+\frac{1}{n}\right)\right\}_{n=1}^{\infty}$ is a monotonically increasing sequence and $\lim_{n\to\infty} \left(-\infty, x+\frac{1}{n}\right] = (-\infty, x]$, and note that $\mu\left((-\infty, x+1]\right) < \infty$ from the finiteness of μ . Hence from

monotonicity of the measure,

$$\lim_{n \to \infty} F\left(x + \frac{1}{n}\right) = \lim_{n \to \infty} \mu\left(\left(-\infty, x + \frac{1}{n}\right]\right)$$
$$= \mu\left(\lim_{n \to \infty} \left(-\infty, x + \frac{1}{n}\right]\right)$$
$$= \mu\left((-\infty, x]\right) = F(x).$$

Now, from F being non-decreasing function, $\limsup_{y\uparrow x} F(y) \leq F\left(x+\frac{1}{n}\right)$ for any $n \in \mathbb{N}$, and hence $\limsup_{y\downarrow x} F(y) \leq \lim_{n\to\infty} F\left(x+\frac{1}{n}\right) = F(x)$. Also for all y > x, $F(y) = \mu((-\infty, y]) \leq \mu((-\infty, x]) = F(x)$, and hence $\liminf_{y\downarrow x} F(y) \geq F(x)$. And hence

$$\lim_{y \downarrow x} F(y) = \liminf_{y \downarrow x} F(y) = \limsup_{y \downarrow x} F(y) = F(x)$$

and hence the right limit $\lim_{y \downarrow x} F(y)$ exists and equals F(x).

- 8. Let $f: \Omega \to S$. Show that, for arbitrary subsets A, A_1, A_2, \ldots of S,
 - (a) $f^{-1}(A^{\complement}) = (f^{-1}(A))^{\complement}$ (b) $f^{-1}(\bigcup_n A_n) = \bigcup_n f^{-1}(A_n)$ and
 - (c) $f^{-1}(\cap_n A_n) = \bigcap_n f^{-1}(A_n).$

(The last two identities actually hold also for uncountable unions and intersections). Let \mathcal{A} be a σ -field over S. Prove that the collection $f^{-1}(\mathcal{A}) = \{f^{-1}(\mathcal{A}), \mathcal{A} \in \mathcal{A}\}$ of subsets of Ω is a σ -field over Ω (in fact, the smallest σ -field on Ω that makes f measurable).

Points: 10 pts = 2 + 2 + 2 + 4.

Solution.

Note that $\omega \in f^{-1}(A)$ if and only if $f(\omega) \in A$. (a) $\omega \in f^{-1}(A^{\complement})$ and $\omega \in (f^{-1}(A))^{\complement}$ are equivalent as

$$\begin{split} \omega \in f^{-1}(A^\complement) & \Longleftrightarrow f(\omega) \in A^\complement \\ & \Longleftrightarrow f(\omega) \notin A \\ & \Longleftrightarrow \omega \notin f^{-1}(A) \\ & \Longleftrightarrow \omega \in (f^{-1}(A))^\complement. \end{split}$$

And hence $f^{-1}(A^{\complement}) = (f^{-1}(A))^{\complement}$. (b) $\omega \in f^{-1}(\bigcup_n A_n)$ and $\omega \in \bigcup_n f^{-1}(A_n)$ are equivalent as

$$\omega \in f^{-1}\left(\bigcup_{n} A_{n}\right) \iff f(\omega) \in \bigcup_{n} A_{n}$$

$$\iff \text{ there exists } n \text{ such that } f(\omega) \in A_{n}$$

$$\iff \text{ there exists } n \text{ such that } \omega \in f^{-1}(A_{n})$$

$$\iff \omega \in \bigcup_{n} f^{-1}(A_{n}).$$

And hence $f^{-1}(\bigcup_n A_n) = \bigcup_n f^{-1}(A_n).$ (c)

 $\omega \in f^{-1}(\bigcap_n A_n)$ and $\omega \in \bigcap_n f^{-1}(A_n)$ are equivalent as

$$\omega \in f^{-1}\left(\bigcap_{n} A_{n}\right) \iff f(\omega) \in \bigcap_{n} A_{n}$$
$$\iff \text{ for all } n, \ f(\omega) \in A_{n}$$
$$\iff \text{ for all } n, \ \omega \in f^{-1}(A_{n})$$
$$\iff \omega \in \bigcap_{n} f^{-1}(A_{n}).$$

And hence $f^{-1}(\bigcap_n A_n) = \bigcap_n f^{-1}(A_n).$ (d)

We first show that $f^{-1}(\mathcal{A}) = \{f^{-1}(A), A \in \mathcal{A}\}$ is a σ -field over Ω . First, since \mathcal{A} is a σ -field over $S, S \in \mathcal{A}$, and hence $\Omega = f^{-1}(S) \in f^{-1}(\mathcal{A})$. Second, for any $f^{-1}(A) \in f^{-1}(\mathcal{A})$, \mathcal{A} being a σ -field and $A \in \mathcal{A}$ implies $A^{\complement} \in \mathcal{A}$, and hence $(f^{-1}(A))^{\complement} = f^{-1}(\mathcal{A}^{\complement}) \in f^{-1}(\mathcal{A})$. Third, if $\{f^{-1}(A_n)\}_{n=1}^{\infty} \subset f^{-1}(\mathcal{A})$, then \mathcal{A} being a σ -field and $\{A_n\}_{n=1}^{\infty} \subset \mathcal{A}$ implies $\bigcup_n A_n \in \mathcal{A}$, which implies $\bigcup_n f^{-1}(A_n) = f^{-1}(\bigcup_n A_n) \in f^{-1}(\mathcal{A})$. Hence $f^{-1}(\mathcal{A})$ is a σ -field. Also, let \mathcal{F} be the σ -field satisfying f to be measurable. Then for all $A \in \mathcal{A}$,

 $f^{-1}(A) \in \mathcal{F}$ from measurability of f, and hence $f^{-1}(A) \subset \mathcal{F}$. Hence $f^{-1}(A)$ is indeed the smallest σ -field on Ω that makes f measurable.

9. Let (Ω, \mathcal{F}) be a measurable space and $\{f_n\}_{n=1,2,\dots}$ be a sequence of real valued measurable function on Ω . Show that the set $\{\omega \in \Omega : \lim_n f_n(\omega) \text{ exists}\}$ is measurable (i.e. it belongs to \mathcal{F}).

Points: 10 pts.

Solution.

Note that if $\{f_n\}_{n=1}^{\infty}$ are measurable functions, then for all n, $\inf_{k\geq n}\{f_k\}$ is a measurable function, and hence $\liminf_n f_n = \sup_n \inf_{k\geq n}\{f_k\}$ is a measurable function as well. Similarly, $\limsup_n f_n = \inf_n \sup_{k\geq n}\{f_k\}$ is a measurable function as well. Now, note that

$$\{\omega \in \Omega : \lim_{n} f_{n}(\omega) \text{ exists}\} = \{\omega \in \Omega : \liminf_{n} f_{n}(\omega) = \limsup_{n} f_{n}(\omega)\}$$
$$= (\limsup_{n} f_{n} - \liminf_{n} f_{n})^{-1}(\{0\}).$$

Since both $\liminf_n f_n$ and $\limsup_n f_n$ are measurable functions, $\limsup_n f_n - \liminf_n f_n$ is a measurable function as well. And $\{0\}$ is a Borel set, and hence $(\limsup_n f_n - \liminf_n f_n)^{-1}(\{0\})$ is a measurable set in Ω .

10. (The induced measure is a measure) Let $(\Omega, \mathcal{F}, \mu)$ be a measure space, (S, \mathcal{A}) a measurable space and $f : \Omega \to S$ a measurable function. Show that the measure induced by f and μ , i.e. the function ν over \mathcal{A} given by

$$A \mapsto \mu(f^{-1}(A)), \quad A \in \mathcal{A},$$

is a measure. Show by example that ν need not be σ -finite if μ is σ -finite.

Points: 10 pts.

Solution.

We check whether ν is a measure. First, for any $A \in \mathcal{A}$, $\nu(A) = \mu(f^{-1}(A)) \geq 0$. Second, since $f^{-1}(\emptyset) = \emptyset$, $\nu(\emptyset) = \mu(f^{-1}(\emptyset)) = \mu(\emptyset) = 0$. Third, let $\{A_n\}_{n=1}^{\infty} \subset \mathcal{A}$ be disjoint sets in \mathcal{A} , then since

$$f^{-1}(A_m) \cap f^{-1}(A_n) = f^{-1}(A_m \cap A_n) = f^{-1}(\emptyset) = \emptyset,$$

 ${f^{-1}(A_n)}_{n=1}^{\infty}$ are disjoint sets in \mathcal{F} as well. Hence by using countable additivity of μ ,

$$\nu\left(\bigcup_{n=1}^{\infty} A_n\right) = \mu\left(f^{-1}\left(\bigcup_{n=1}^{\infty} A_n\right)\right) = \mu\left(\bigcup_{n=1}^{\infty} f^{-1}(A_n)\right)$$
$$= \sum_{n=1}^{\infty} \mu(f^{-1}(A_n)) = \sum_{n=1}^{\infty} \nu(A_n).$$

Hence countable additivity holds for ν as well. And hence ν is a measure.

Let $f : \mathbb{N} \to \{0\}$ be defined as f(x) = 0 for all $x \in \mathbb{N}$, $(\mathbb{N}, 2^{\mathbb{N}}, \mu)$ be such that μ is a counting measure on \mathbb{N} , and ν be the induced measure on $(\{0\}, 2^{\{0\}})$. Then $\{\{n\}\}_{n=1}^{\infty}$ is a countable subset of \mathbb{N} such that $\bigcup_n \{n\} = \mathbb{N}$ and $\mu(\{n\}) = 1 < \infty$, hence μ is a σ -finite measure. However,

$$\nu(\{0\}) = \mu(f^{-1}(\{0\})) = \mu(\mathbb{N}) = \infty,$$

and hence ν has an infinite mass on a singleton set $\{0\}$. Then for any countable subset $A_n \subset \{0\}$ with $\bigcup_n A_n = \{0\}$, there exists $A_n \supset \{0\}$, and $\nu(A_n) \ge \nu(\{0\}) = \infty$. Hence ν cannot be σ -finite.