
36-752, Spring 2018
Homework 1 Solution

Due Thu Feb 15, by 5:00pm in Jisu’s mailbox.

Points: 100+5 pts total for the assignment.

1. Limits superior and inferior.

(a) Let An be (−1/n, 1] if n is odd and (−1, 1/n] if n is even. Find lim supnAn and
lim infnAn.

(b) Bonus Problem. Let An the interior of the ball in R2 with unit radius and

center
(

(−1)n

n
, 0
)

. Find lim supnAn and lim infnAn.

(c) Show that lim infnAn ⊆ lim supnAn

(d) Show that (lim supnAn)c = lim infnA
c
n and (lim infnAn)c = lim supnA

c
n.

Points: 10 + 5 pts = 4 + 5 + 3 + 3.

Solution.

(a)

Note that for any k ∈ N, Ak ∪ Ak+1 = (−1, 1]. Hence
⋃∞

k=nAk = (−1, 1] for all
n ∈ N, and hence

lim sup
n

An =
∞⋂
n=1

∞⋃
k=n

Ak =
∞⋂
n=1

(−1, 1] = (−1, 1].

Also, note that for any m ∈ N
⋂∞

k=mA2k−1 = [0, 1] and
⋂∞

k=mA2k = (−1, 0].
Hence

⋂∞
k=nAk = {0} for any n ∈ N, and hence

lim inf
n

An =
∞⋃
n=1

∞⋂
k=n

Ak =
∞⋃
n=1

{0} = {0}.

(b)

Let D := {x ∈ R2 : ‖x‖2 < 1} and B := {x = (x1, x2) ∈ R2 : ‖x‖2 = 1, x1 6= 0}.
We will show that lim infnAn = D and lim supnAn = D ∪B.

For lim infnAn, note that x ∈ lim infnAn if and only if x ∈ An for all but finite n.
Suppose x ∈ D. Then ‖x‖2 < 1, so choose N large enough so that 1

N
< 1−‖x‖2.

Then for all n ≥ N ,∥∥∥∥x− ((−1)n

n
, 0

)∥∥∥∥
2

≤ ‖x‖2 +

∥∥∥∥((−1)n

n
, 0

)∥∥∥∥
2

= ‖x‖2 +
1

n
≤ ‖x‖2 +

1

N
< 1.
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Then x ∈ An for all n ≥ N , and hence x ∈ lim infnAn, which implies D ⊂
lim infnAn. Now, suppose x /∈ D and x1 ≥ 0. Then for all odd n,∥∥∥∥x− ((−1)n

n
, 0

)∥∥∥∥
2

=

∥∥∥∥(x1 −
1

n
, x2

)∥∥∥∥
2

> ‖(x1, x2)‖2 ≥ 1,

Hence x /∈ An for all odd n, and hence x /∈ lim infnAn. Similarly, when x /∈ D
and x1 ≤ 0, then x /∈ An for all even n, and hence x /∈ lim infnAn. These imply
lim infnAn ⊂ D, and hence

lim inf
n

An = D.

For lim supnAn, note that x ∈ lim supnAn if and only if x ∈ An for infinitely
many n. Suppose x ∈ D ∪ B. We have already shown that D = lim infnAn ⊂
lim supnAn, and hence if x ∈ D then x ∈ lim supnAn. Now, suppose x ∈ B and
x1 > 0. Then ‖x‖1 = 1. Choose N large enough so that 1

N
< |x1|. Then for all

even n with n ≥ N ,
∣∣x1 − 1

n

∣∣ ≤ |x1|, and hence∥∥∥∥x− ((−1)n

n
, 0

)∥∥∥∥
2

=

∥∥∥∥(x1 −
1

n
, x2

)∥∥∥∥
2

< ‖(x1, x2)‖2 = 1.

Hence x ∈ An for all even n with n ≥ N , and hence x ∈ lim supnAn. Similarly,
when x ∈ B and x1 < 0, x ∈ An for all odd n with n ≥ N , and hence x ∈
lim supnAn. These imply that D ∪ B ⊂ lim supnAn. Now, suppose x /∈ D ∪ B.
Then ‖x‖2 > 1 or x = (0,±1). When ‖x‖2 > 1, choose N large enough so that
1
N
< 1− ‖x‖2. Then for all n ≥ N ,∥∥∥∥x− ((−1)n

n
, 0

)∥∥∥∥
2

≥ ‖x‖2 −
∥∥∥∥((−1)n

n
, 0

)∥∥∥∥
2

= ‖x‖2 −
1

n
≥ ‖x‖2 −

1

N
> 1.

Then x /∈ An for all n with n ≥ N , and hence x /∈ lim supnAn. Also, when
x = (0,±1), then for all n,∥∥∥∥x− ((−1)n

n
, 0

)∥∥∥∥
2

=

∥∥∥∥(−(−1)n

n
,±1

)∥∥∥∥
2

=

√
1 +

1

n2
> 1,

Then x /∈ An for all n, and hence x /∈ lim supnAn. These show lim supnAn ⊂
D ∪B, and hence

lim sup
n

An = D ∪B.

(c)
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Note that for all m,n ∈ N,

∞⋂
k=m

Ak ⊂ Amax{m,n} ⊂
∞⋃
k=n

Ak.

Hence for all n ∈ N,

lim inf
n

An =
∞⋃

m=1

∞⋂
k=m

Ak ⊂
∞⋃
k=n

Ak

holds, and hence

lim inf
n

An ⊂
∞⋂
n=1

∞⋃
k=n

Ak = lim sup
n

An.

(d)

By applying De Morgan’s law,(
lim sup

n
An

){

=

(
∞⋂
n=1

∞⋃
k=n

Ak

){

=
∞⋃
n=1

(
∞⋃
k=n

Ak

){

=
∞⋃
n=1

∞⋂
k=n

A{
k = lim inf

n
A{

n.

Similarly,

(
lim inf

n
An

){
=

(
∞⋂
n=1

∞⋃
k=n

Ak

){

=
∞⋃
n=1

(
∞⋃
k=n

Ak

){

=
∞⋃
n=1

∞⋂
k=n

A{
k = lim inf

n
A{

n.

2. Let A be a collection of subsets of Ω. Let F be the intersection of all σ-fields that
include A as a subset. Show that F is also a σ-field and it is the smallest σ-field that
includes A as a subset.

Points: 10 pts.

Solution.

Let A :=
{
G ⊂ 2Ω : G is σ-field, A ⊂ G

}
, and let F =

⋂
G∈A G.

We will first show that F is a σ-field. First, Ω ∈ G for any σ-field G, and hence
Ω ∈ F as well. Second, if A ∈ F , then A ∈ G for all G ∈ A . Then from G being a
σ-field, A{ ∈ G for all G ∈ A , and hence A{ ∈ F . Third, suppose {An}∞n=1 ⊂ F ,
then {An}∞n=1 ⊂ G for all G ∈ A . Then from G being a σ-field,

⋃
nAn ∈ G for all

G ∈ A , and hence
⋃

nAn ∈ F as well. Hence F is a σ-field.

Now, note that A ⊂ G for all G ∈ A , and hence A ⊂ F , and F is a σ-field with
A ⊂ F . Also, for any G: σ-field with A ⊂ G. Then G ∈ A , and hence F ⊂ G.
Hence F is the smallest σ-field that includes A as a subset.
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3. Exercise 6 in Lecture Notes Set 1.
Let F1, F2, . . . be classes of sets in a common space Ω such that Fn ⊂ Fn+1 for each
n. Show that if each Fn is a field, then ∪∞n=1Fn is also a field.

If each Fn is a σ-field, then ∪∞n=1Fn is not necessarily a σ-field. Think about the
following case: Ω is the set of nonnegative integers and Fn is the σ-field of all subsets
of {0, 1, . . . , n} and their complements.
Hint: You can prove this in more than one way. For instance show that the set of even
numbers can be obtained as a countable unions of sets in

⋃
nFn but it cannot belong

to
⋃

nFn. Alternatively, show that the smallest σ-field containing
⋃

nFn must contain
uncountably many sets but

⋃
nFn is countable.

Points: 10 pts.

Solution.

We will first show that
⋃

nFn is a field. First, Ω ∈ Fn for any n, and hence
Ω ∈

⋃
nFn. Second, if A ∈

⋃
nFn, then there exists n ∈ N with A ∈ Fn. Then

from Fn being a field, A{ ∈ Fn, and hence A{ ∈
⋃

nFn as well. Third, suppose
A,B ∈

⋃
nFn. Then there exists m,n ∈ N with A ∈ Fm and B ∈ Fn. Then from

Fm,Fn ⊂ Fmax{m,n}, A,B ∈ Fmax{m,n} as well. Then from Fmax{m,n} being a field,
A ∪B ∈ Fmax{m,n}, and hence A ∪B ∈

⋃
nFn as well. Hence

⋃
nFn is a field.

For counterexample for σ-field, let [n] := {1, . . . , n}, and let Fn := {A ⊂ N :
either A ⊂ [n] or N\A ⊂ [n]}. Then Fn is σ-field. First, N\N = ∅ ⊂ [n], and
hence N ∈ Fn. Second, if A ∈ Fn, then either A ⊂ [n] or N\A ⊂ [n], and then A{

satisfies either N\A{ = A ⊂ [n] or A{ = N\A ⊂ [n], and hence A{ ∈ Fn. Third, if
{Am}∞m=1 ⊂ Fn, then there are two cases: if Am ⊂ [n] for all m, then

⋃
mAm ⊂ [n]

as well, and hence
⋃

mAm ∈ Fn. If there exists m such that N\Am ⊂ [n], then
N\(

⋃
mAm) ⊂ N\Am ⊂ [n], and hence

⋃
mAm ∈ Fn. Hence, Fn is a σ-field. Also,

A ⊂ [n] or N\A ⊂ [n] implies A ⊂ [n+1] or N\A ⊂ [n+1], and hence Fn ⊂ Fn+1.

Now, consider Am = {2m} for m ∈ N, so that
⋃

mAm = {2, 4, . . .}. Then Am ∈
F2m ⊂

⋃
mFm for all m ∈ N. However, if we assume that

⋃
mAm ∈

⋃
nFn, then

there exists a finite n such that
⋃

mAm ∈ Fn. This implies that either
⋃

mAm =
{2, 4, . . .} ⊂ [n] or N\(

⋃
mAm) = {1, 3, . . .} ⊂ [n]. But this is impossible since

both
⋃

mAm and N\(
⋃

mAm) are infinite sets. Hence
⋃

mAm /∈
⋃

nFn, and hence⋃
nFn is not a σ-field.

4. Let µ be a counting measure on an infinite set Ω. Show that there exists a decreasing
sequence of sets An such that An ↓ ∅ but limn µ(An) 6= 0. (This should help addressing
Exercise 13 in the lecture notes).

Points: 10 pts.

Solution.
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Since Ω is infinite, there exists an injective function f : N → Ω. Let An :=
{f(m) ∈ Ω : m ∈ N,m ≥ n}. Then An ⊃ An+1. Also, An ⊂ f(N) := {f(m) ∈
Ω : m ∈ N}, and for any f(m) ∈ f(N), f(m) /∈ An for n > m, and hence
An ↓ ∅. However, all An’s are infinite sets, so µ(An) = ∞ for all n, and hence
limn→∞ µ(An) =∞ 6= 0.

5. If µ1, µ2, . . . are all measures on (Ω,F) and if {an}∞n=1 is a sequence of positive numbers,
then

∑∞
n=1 anµn is a measure on (Ω,F).

Points: 10 pts.

Solution.

We check whether
∑∞

n=1 anµn is a measure. First, for any A ∈ F , µn(A) ≥ 0 from
µn being a measure and an ≥ 0 for all n, and hence(

∞∑
n=1

anµn

)
(A) =

∞∑
n=1

anµn(A) ≥ 0.

Second, for all n ∈ N, µn(∅) = 0 from µn being a measure, and hence(
∞∑
n=1

anµn

)
(∅) =

∞∑
n=1

anµn(∅) = 0.

Third, let A1, A2, . . . be disjoint sets in F . Then from countable additivity of each
µn and Fubini’s theorem,(

∞∑
n=1

anµn

)(
∞⋃

m=1

Am

)
=
∞∑
n=1

anµn

(
∞⋃

m=1

Am

)

=
∞∑
n=1

an

∞∑
m=1

µn(Am) (countable additivity)

=
∞∑

m=1

∞∑
n=1

anµn(Am) (Fubini’s theorem)

=
∞∑

m=1

(
∞∑
n=1

anµn

)
(Am).

Hence countable additivity holds for
∑∞

n=1 anµn as well. And hence
∑∞

n=1 anµn

is a measure.

6. Let A1, . . . , An be arbitrary subsets of Ω. Describe as explicitly as you can Fn, the
smallest σ-field containing them. Give a non-trivial upper bound on the cardinality of
Fn. List all the elements of F2.

Points: 10 pts.
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Solution.

For any ω ∈ {−1, 1}n so that wi is either −1 or 1, let Aω :=

( ⋂
i:ωi=1

Ai

)
∩( ⋂

i:ωi=−1

A{
i

)
. And for any I ⊂ 2{−1,1}n , let AI =

⋃
ω∈I Aω. And let

Gn : =
{
AI : I ⊂ 2{−1,1}n}

=
{
Aω(1) ∪ · · · ∪ Aω(k) : ω(j) ∈ {−1, 1}n

}
.

Note that if we let Ii := {ω ∈ {−1, 1}n : ωi = 1}, then Ai = AIi and A{
i =

A2{−1,1}n\Ii . Also, all Aω are disjoint.

We first show that Gn is a σ-field. First, fix any i ∈ I, then from Ai = AIi and
A{

i = A2{−1,1}n\Ii ,

Ω = Ai ∪ A{
i = AIi ∪ A2{−1,1}n\Ii = A2{−1,1}n ∈ Gn.

Second, for any ω ∈ {−1, 1}n, let Iω := 2{−1,1}n\{ω}, then A{
ω = AIω , and hence

if AI ∈ Gn, then from Aω’s being disjoint,

A{
I =

(⋃
ω∈I

Aω

){

=
⋂
ω∈I

A{
ω

=
⋂
ω∈I

AIω = A⋂
ω∈I Iω

∈ Gn.

Third, if {AJi}
∞
i=1 ⊂ Gn, then

∞⋃
i=1

AJi = A⋃∞
i=1 Ji

∈ Gn.

Hence Gn is a σ-field. Also, suppose F is a σ-field containing A1, . . . , An. Then
since σ-field is closed under finite intersection and union, Gn ⊂ F . Hence Gn is
the smallest σ-field containing A1, . . . , An, i.e.

Fn = Gn =
{
AI : I ⊂ 2{−1,1}n} .

Then, since |2{−1,1}n| = 22n ,
|Fn| ≤ 22n .

This bound is actually strict: suppose Ω = {−1, 1}n andAi = {ω ∈ {−1, 1}n : ωi = 1}.

Then for any ω ∈ {−1, 1}n, Aω =

( ⋂
i:ωi=1

Ai

)
∩
( ⋂

i:ωi=−1

A{
i

)
= {ω}, hence Aω

are all disjoint singleton sets. And hence for each I ⊂ 2{−1,1}n , corresponding
AI =

⋃
ω∈I Aω’s are all different as well, and hence |Fn| = 22n for this case.
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From the above construction, F2 consists of arbitrary numbers of unions from
A1 ∩ A2, A1 ∩ A{

2, A
{
1 ∩ A2, A

{
1 ∩ A{

2. The numbers range from 0 to 4. Taking 0
union only gives ∅, and 1 union gives themselves. Taking 2 unions gives A1, A2,
A{

1, A{
2, (A1∩A{

2)∪ (A{
1∩A2), (A1∩A2)∪ (A{

1∩A{
2). Taking 3 union gives A1∪A2,

A1∪A{
2, A{

1∪A2, A{
1∪A{

2. And taking 4 union gives Ω. Hence F2 can be enlisted
as

F2 = {∅, A1 ∩ A2, A1 ∩ A{
2, A

{
1 ∩ A2, A

{
1 ∩ A{

2,

A1, A2, A
{
1, A

{
2, (A1 ∩ A{

2) ∪ (A{
1 ∩ A2), (A1 ∩ A2) ∪ (A{

1 ∩ A{
2),

A1 ∪ A2, A1 ∪ A{
2, A

{
1 ∪ A2, A

{
1 ∪ A{

2,Ω}.

7. Let µ be a finite measure on (R,B) and, for any x ∈ R, set F (x) = µ((−∞, x]). Show
that F is cádlág.

Points: 10 pts.

Solution.

We need to check that for all x ∈ R, the left limit limy↑x F (y) exists, and the
right limit limy↓x F (y) exists and equals F (x). For the left limit, we first show
limn→∞ F

(
x− 1

n

)
= µ((−∞, x)). Note that

{(
−∞, x− 1

n

]}∞
n=1

is a monotoni-

cally increasing sequence and limn→∞
(
−∞, x− 1

n

]
= (−∞, x), and hence from

monotonicity of the measure,

lim
n→∞

F

(
x− 1

n

)
= lim

n→∞
µ

((
−∞, x− 1

n

])
= µ

(
lim
n→∞

(
−∞, x− 1

n

])
= µ ((−∞, x)) .

Now, from F being non-decreasing function, lim infy↑x F (y) ≥ F
(
x− 1

n

)
for any

n ∈ N, and hence lim infy↑x F (y) ≥ limn→∞ F
(
x− 1

n

)
= µ ((−∞, x)). Also

for all y < x, F (y) = µ((−∞, y]) ≤ µ((−∞, x)), and hence lim supy↑x F (y) ≤
µ((−∞, x)). And hence

lim
y↑x

F (y) = lim inf
y↑x

F (y) = lim sup
y↑x

F (y) = µ ((−∞, x)) ,

and hence the left limit limy↑x F (y) exists.

Similarly for the right limit, we first show limn→∞ F
(
x+ 1

n

)
= F (x). Note that{(

−∞, x+ 1
n

]}∞
n=1

is a monotonically increasing sequence and limn→∞
(
−∞, x+ 1

n

]
=

(−∞, x], and note that µ ((−∞, x+ 1]) <∞ from the finiteness of µ. Hence from
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monotonicity of the measure,

lim
n→∞

F

(
x+

1

n

)
= lim

n→∞
µ

((
−∞, x+

1

n

])
= µ

(
lim
n→∞

(
−∞, x+

1

n

])
= µ ((−∞, x]) = F (x).

Now, from F being non-decreasing function, lim supy↑x F (y) ≤ F
(
x+ 1

n

)
for any

n ∈ N, and hence lim supy↓x F (y) ≤ limn→∞ F
(
x+ 1

n

)
= F (x). Also for all y > x,

F (y) = µ((−∞, y]) ≤ µ((−∞, x]) = F (x), and hence lim infy↓x F (y) ≥ F (x). And
hence

lim
y↓x

F (y) = lim inf
y↓x

F (y) = lim sup
y↓x

F (y) = F (x),

and hence the right limit limy↓x F (y) exists and equals F (x).

8. Let f : Ω→ S. Show that, for arbitrary subsets A,A1, A2, . . . of S,

(a) f−1(A{) = (f−1(A)){

(b) f−1(∪nAn) =
⋃

n f
−1(An) and

(c) f−1(∩nAn) =
⋂

n f
−1(An).

(The last two identities actually hold also for uncountable unions and intersections).
Let A be a σ-field over S. Prove that the collection f−1(A) = {f−1(A), A ∈ A}
of subsets of Ω is a σ-field over Ω (in fact, the smallest σ-field on Ω that makes f
measurable).

Points: 10 pts = 2 + 2 + 2 + 4.

Solution.

Note that ω ∈ f−1(A) if and only if f(ω) ∈ A.

(a)

ω ∈ f−1(A{) and ω ∈ (f−1(A)){ are equivalent as

ω ∈ f−1(A{) ⇐⇒ f(ω) ∈ A{

⇐⇒ f(ω) /∈ A
⇐⇒ ω /∈ f−1(A)

⇐⇒ ω ∈ (f−1(A)){.

And hence f−1(A{) = (f−1(A)){.

(b)
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ω ∈ f−1 (
⋃

nAn) and ω ∈
⋃

n f
−1(An) are equivalent as

ω ∈ f−1

(⋃
n

An

)
⇐⇒ f(ω) ∈

⋃
n

An

⇐⇒ there exists n such that f(ω) ∈ An

⇐⇒ there exists n such that ω ∈ f−1(An)

⇐⇒ ω ∈
⋃
n

f−1(An).

And hence f−1 (
⋃

nAn) =
⋃

n f
−1(An).

(c)

ω ∈ f−1 (
⋂

nAn) and ω ∈
⋂

n f
−1(An) are equivalent as

ω ∈ f−1

(⋂
n

An

)
⇐⇒ f(ω) ∈

⋂
n

An

⇐⇒ for all n, f(ω) ∈ An

⇐⇒ for all n, ω ∈ f−1(An)

⇐⇒ ω ∈
⋂
n

f−1(An).

And hence f−1 (
⋂

nAn) =
⋂

n f
−1(An).

(d)

We first show that f−1(A) = {f−1(A), A ∈ A} is a σ-field over Ω. First, since
A is a σ-field over S, S ∈ A, and hence Ω = f−1(S) ∈ f−1(A). Second, for
any f−1(A) ∈ f−1(A), A being a σ-field and A ∈ A implies A{ ∈ A, and hence
(f−1(A)){ = f−1(A{) ∈ f−1(A). Third, if {f−1(An)}∞n=1 ⊂ f−1(A), then A being
a σ-field and {An}∞n=1 ⊂ A implies

⋃
nAn ∈ A, which implies

⋃
n f
−1(An) =

f−1(
⋃

nAn) ∈ f−1(A). Hence f−1(A) is a σ-field.

Also, let F be the σ-field satisfying f to be measurable. Then for all A ∈ A,
f−1(A) ∈ F from measurability of f , and hence f−1(A) ⊂ F . Hence f−1(A) is
indeed the smallest σ-field on Ω that makes f measurable.

9. Let (Ω,F) be a measurable space and {fn}n=1,2,... be a sequence of real valued mea-
surable function on Ω. Show that the set {ω ∈ Ω : limn fn(ω) exists} is measurable
(i.e. it belongs to F).

Points: 10 pts.

Solution.
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Note that if {fn}∞n=1 are measurable functions, then for all n, infk≥n{fk} is a
measurable function, and hence lim infn fn = supn infk≥n{fk} is a measurable
function as well. Similarly, lim supn fn = infn supk≥n{fk} is a measurable function
as well. Now, note that

{ω ∈ Ω : lim
n
fn(ω) exists} = {ω ∈ Ω : lim inf

n
fn(ω) = lim sup

n
fn(ω)}

= (lim sup
n

fn − lim inf
n

fn)−1({0}).

Since both lim infn fn and lim supn fn are measurable functions, lim supn fn −
lim infn fn is a measurable function as well. And {0} is a Borel set, and hence
(lim supn fn − lim infn fn)−1({0}) is a measurable set in Ω.

10. (The induced measure is a measure) Let (Ω,F , µ) be a measure space, (S,A)
a measurable space and f : Ω → S a measurable function. Show that the measure
induced by f and µ, i.e. the function ν over A given by

A 7→ µ(f−1(A)), A ∈ A,

is a measure. Show by example that ν need not be σ-finite if µ is σ-finite.

Points: 10 pts.

Solution.

We check whether ν is a measure. First, for any A ∈ A, ν(A) = µ(f−1(A)) ≥
0.Second, since f−1(∅) = ∅, ν(∅) = µ(f−1(∅)) = µ(∅) = 0. Third, let {An}∞n=1 ⊂
A be disjoint sets in A, then since

f−1(Am) ∩ f−1(An) = f−1(Am ∩ An) = f−1(∅) = ∅,

{f−1(An)}∞n=1 are disjoint sets in F as well. Hence by using countable additivity
of µ,

ν

(
∞⋃
n=1

An

)
= µ

(
f−1

(
∞⋃
n=1

An

))
= µ

(
∞⋃
n=1

f−1(An)

)

=
∞∑
n=1

µ(f−1(An)) =
∞∑
n=1

ν(An).

Hence countable additivity holds for ν as well. And hence ν is a measure.

Let f : N → {0} be defined as f(x) = 0 for all x ∈ N, (N, 2N, µ) be such that µ
is a counting measure on N, and ν be the induced measure on ({0}, 2{0}). Then
{{n}}∞n=1 is a countable subset of N such that

⋃
n{n} = N and µ({n}) = 1 <∞,

hence µ is a σ-finite measure. However,

ν({0}) = µ(f−1({0})) = µ(N) =∞,
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and hence ν has an infinite mass on a singleton set {0}. Then for any countable
subset An ⊂ {0} with

⋃
nAn = {0}, there exists An ⊃ {0}, and ν(An) ≥ ν({0}) =

∞. Hence ν cannot be σ-finite.
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