36-752, Spring 2018
Homework 2

Due Thu March 1, by 5:00pm in Jisu’s mailbox.

1. Let P and @ two probability measures on some measurable space (€2, F) and let p be
any o-finite measure on that space such that both P and () are absolutely continuous
with respect to u (for example, you may take p = P + Q). Let p = % and ¢ = % be
the corresponding Radon-Nykodim derivatives.

The total variation distance between P and () is defined as

drv(P,Q) = sup |[P(A) — Q(A)].
AeF
This is a very strong notion of distance between probability distributions: if dry (P, Q) <

€, for some small € > 0, then any probabilistic statement involving P will differ by at
most € from the corresponding statement involving Q).

(a) Show that dry is a metric over the set of all probability measure on (€2, F). In
particular, drv(P, Q) = 0 if and only if P = Q.

(b) Show that dry(P,Q) = 1 if and only if P and @) are mutually singular.

(¢) Prove that the following equivalent representation of the total variation distance:

1
drv(P,Q) = 5/ lp — qldp.
Q

Thus, the total variation distance is half the L; distance between densities.
Hint: in the definition of total variation distance you may want to take A = {q >
p}. Show that the supremum is achieved by this set...

(d) Total variation distance and hypothesis testing. Let X be a random vari-
able taking values in some measurable space (.5,.4). Suppose we are interested in
testing the null hypothesis that the distribution of X (a probability measure on
(S, A)!) is P versus the alternative hypothesis that it is Q). We do so by devising
a test ¢, which is a measurable function from S into {0,1} such that ¢(z) =1
(resp. ¢(z) = 0) signifies that the null hypothesis is rejected (resp. not rejected)
if X takes on the value x. To measure the performance of a given test function ¢
we evaluate its risk, defined as the sum of type I and type II errors:

Rpq(¢) =[q¢dP+[q(1—¢)dQ.

Show that
lgf RP,Q(QS) =1~ dTV(Pv Q)7

where the infimum si over all test functions.
The above result formalizes the intuition that the closer P and ) are, the harder
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it is to tell them apart using any test function. In particular, Rpg(¢) =0 — i.e.,
it is possible to perfectly discriminate between P and () — if and only if the two
probability measures are mutually singular.

Hint: use the Neymann-Pearson approach and take ¢ to be the indicator function

of the set {q > p}.

2. Another way of quantifying how close two probability measures on some measurable
space (§2, F) are is to compute their Kullback-Liebler (KL) divergence, defined as

flog%dP if P<< @

00 otherwise.

K(rQ-{

If P and @ are both absolutely continuous with respect to a o-finite measure p, then,
assuming P << Q, K(P,Q) = [ log (%) p(w)dp(w) where p and g are the p-densities
of P and @, respectively. In general K (P, Q) is not a metric over the space of proba-
bility measures on (£2, F): K is not symmetric!

(a) Use Jensen inequality to show that K(P,@Q) > 0 with equality if and only if
P=0Q.

(b) Take (2, F) to be (R*, B¥) and let P = {Py, 0 € R*} where Py is the multivariate
k-dimensional normal distribution with covariance matrix ¥ and mean 6 (thus,

¥ is the common covariance matrix of all the Py’s). Compute K (P, , Pp,) for all
Py, and Py, in P. Conclude that, over P, K behaves like a metric (which one?).

(c) Take (2, F) tobe (R, B) and, for any 6 > 0, let Py be the distribution Uniform(0, ).
Compute K (Py,, Py,) for all 61,6, € (0, 00).

3. Riemann versus Lebesgue Integral. Let f(z) = % ifn—1< 2z < n for
n=1,2,.... We saw in class that fooo f(z)dz exists as an improper Riemann integral
since

b
lim/o f(z) = —log2.

b—o0

Show however that f is not Lebesgue integrable over [0, 00). Hint: it is enough to show
that [~ |f| = oc.
In contrast, show that the function f: [0,1] — {0, 1} such that f(z) = 1 if x is rational

and 0 otherwise is such that fol f(z)dA(z) = 0 but it is not Riemann integrable. Hint:
you will need the result in the next exercise.

4. Show that the Lebesgue measure and any counting measure over a countable subset of
R* (for example, the set of rationals) are mutually singular.

5. Let f be an integrable real-valued function over a measure space (€2, F, P). Show that
f is finite almost everywhere [u|. Hint: you may assume that f > 0 then you only need
to show that f < oo almost everywhere [pu).
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10.

. Assume that f and g are simple functions on some measure space (€2, F,u). Prove

that, for all a,b € R,

/(af+bg)du:a/fdu+b/gd,u.

Let {f.} be a sequence of non-negative functions on some measure space (§2, F, u).
Assume that [ f,dp — 0. Prove or disprove (with a counter-example): f, — 0 a.e.[u].

Let (4, F1), ..., (Q, Fi) be k measurable spaces. For j =1,...,k let 7;: Hle Q; —
€2; denote the coordinate projection mapping given by m;(wi, ..., wy) = w;. Show that
the product o-field ®f:1 F; is the o-field generated by all the coordinate projections.

Let \; denote the k-dimensional Lebesgue measure and H be a linear subspace in R*
of dimension no larger than k£ — 1. Show that A\;(H) = 0. You may proceed as follows:

(a) show that the Lebesgue measure is translation invariant: for each Borel measur-
able set A and x € R¥, \,(A) = M\(z + A), where v + A = {x +y,y € A}. Hint:
use the good set principle to show that the class of sets A such that A+ x € BF
for all x € R¥ coincides with B* and then show — using the uniqueness theorem
for measures — that any measure p such that, for any fized x, u(A) = A\(A + x)
for all A € B coincides with \y.

(b) Use the fact (which you do not need to prove!) that, for any o-finite measure
on (2, F), only countably many disjoint sets in F can have positive measure to
conclude that Ax(H) = 0 for any subspace of dimension less than k. (In fact, the
same conclusion holds for any affine subspace of dimension less than k, where an
affine subspace is a set of the form z + S = {x + y,y € S} for a linear subspace
S and a point x € R¥).

Use Kolmogorov’s extension theorem to demonstrate the existence of a probability
distribution over infinite sequences of fair coin tosses. In fact, in this case we can
construct such measure explicitly and without relying on Kolmogorov’s theorem. Let
2 be the unit interval (0, 1) equipped with the o-field of Borel subsets and the Lebesgue
measure P. Let Y, (w) = 1 if [2"w] (the integral part of 2"w) is odd and 0 otherwise.
Show that Y7,Y5,... are independent with P(Y,, = 0) = P(Yy = 1) = 1/2 for all k. For
any w € €, the binary sequence {Y,,(w),n = 1,2,...} is the corresponding sample path
of the process.



