
36-752, Spring 2018
Homework 2

Due Thu March 1, by 5:00pm in Jisu’s mailbox.

1. Let P and Q two probability measures on some measurable space (Ω,F) and let µ be
any σ-finite measure on that space such that both P and Q are absolutely continuous
with respect to µ (for example, you may take µ = P +Q). Let p = dP

dµ
and q = dQ

dµ
be

the corresponding Radon-Nykodim derivatives.
The total variation distance between P and Q is defined as

dTV(P,Q) = sup
A∈F
|P (A)−Q(A)|.

This is a very strong notion of distance between probability distributions: if dTV(P,Q) <
ε, for some small ε > 0, then any probabilistic statement involving P will differ by at
most ε from the corresponding statement involving Q.

(a) Show that dTV is a metric over the set of all probability measure on (Ω,F). In
particular, dTV(P,Q) = 0 if and only if P = Q.

(b) Show that dTV(P,Q) = 1 if and only if P and Q are mutually singular.

(c) Prove that the following equivalent representation of the total variation distance:

dTV(P,Q) =
1

2

∫
Ω

|p− q|dµ.

Thus, the total variation distance is half the L1 distance between densities.
Hint: in the definition of total variation distance you may want to take A = {q ≥
p}. Show that the supremum is achieved by this set...

(d) Total variation distance and hypothesis testing. Let X be a random vari-
able taking values in some measurable space (S,A). Suppose we are interested in
testing the null hypothesis that the distribution of X (a probability measure on
(S,A)!) is P versus the alternative hypothesis that it is Q. We do so by devising
a test φ, which is a measurable function from S into {0, 1} such that φ(x) = 1
(resp. φ(x) = 0) signifies that the null hypothesis is rejected (resp. not rejected)
if X takes on the value x. To measure the performance of a given test function φ
we evaluate its risk, defined as the sum of type I and type II errors:

RP,Q(φ) =

∫
S

φdP +

∫
S

(1− φ)dQ.

Show that
inf
φ
RP,Q(φ) = 1− dTV(P,Q),

where the infimum si over all test functions.
The above result formalizes the intuition that the closer P and Q are, the harder
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it is to tell them apart using any test function. In particular, RP,Q(φ) = 0 – i.e.,
it is possible to perfectly discriminate between P and Q – if and only if the two
probability measures are mutually singular.
Hint: use the Neymann-Pearson approach and take φ to be the indicator function
of the set {q ≥ p}.

2. Another way of quantifying how close two probability measures on some measurable
space (Ω,F) are is to compute their Kullback-Liebler (KL) divergence, defined as

K(P,Q) =

{ ∫
log dP

dQ
dP if P << Q

∞ otherwise.

If P and Q are both absolutely continuous with respect to a σ-finite measure µ, then,

assuming P << Q, K(P,Q) =
∫

log
(
p(ω)
q(ω)

)
p(ω)dµ(ω) where p and q are the µ-densities

of P and Q, respectively. In general K(P,Q) is not a metric over the space of proba-
bility measures on (Ω,F): K is not symmetric!

(a) Use Jensen inequality to show that K(P,Q) ≥ 0 with equality if and only if
P = Q.

(b) Take (Ω,F) to be (Rk,Bk) and let P = {Pθ, θ ∈ Rk} where Pθ is the multivariate
k-dimensional normal distribution with covariance matrix Σ and mean θ (thus,
Σ is the common covariance matrix of all the Pθ’s). Compute K(Pθ1 , Pθ2) for all
Pθ1 and Pθ2 in P . Conclude that, over P , K behaves like a metric (which one?).

(c) Take (Ω,F) to be (R,B) and, for any θ > 0, let Pθ be the distribution Uniform(0, θ).
Compute K(Pθ1 , Pθ2) for all θ1, θ2 ∈ (0,∞).

3. Riemann versus Lebesgue Integral. Let f(x) = (−1)n

n
if n − 1 ≤ x < n for

n = 1, 2, . . .. We saw in class that
∫∞

0
f(x)dx exists as an improper Riemann integral

since

lim
b→∞

∫ b

0

f(x) = − log 2.

Show however that f is not Lebesgue integrable over [0,∞). Hint: it is enough to show
that

∫∞
0
|f | =∞.

In contrast, show that the function f : [0, 1]→ {0, 1} such that f(x) = 1 if x is rational

and 0 otherwise is such that
∫ 1

0
f(x)dλ(x) = 0 but it is not Riemann integrable. Hint:

you will need the result in the next exercise.

4. Show that the Lebesgue measure and any counting measure over a countable subset of
Rk (for example, the set of rationals) are mutually singular.

5. Let f be an integrable real-valued function over a measure space (Ω,F , P ). Show that
f is finite almost everywhere [µ]. Hint: you may assume that f ≥ 0 then you only need
to show that f <∞ almost everywhere [µ].
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6. Assume that f and g are simple functions on some measure space (Ω,F , µ). Prove
that, for all a, b ∈ R, ∫

(af + bg)dµ = a

∫
fdµ+ b

∫
gdµ.

7. Let {fn} be a sequence of non-negative functions on some measure space (Ω,F , µ).
Assume that

∫
fndµ→ 0. Prove or disprove (with a counter-example): fn → 0 a.e.[µ].

8. Let (Ω1,F1), . . . , (Ωk,Fk) be k measurable spaces. For j = 1, . . . , k let πj :
∏k

i=1 Ωi →
Ωj denote the coordinate projection mapping given by πi(ω1, . . . , ωk) = ωj. Show that

the product σ-field
⊗k

i=1Fi is the σ-field generated by all the coordinate projections.

9. Let λk denote the k-dimensional Lebesgue measure and H be a linear subspace in Rk

of dimension no larger than k− 1. Show that λk(H) = 0. You may proceed as follows:

(a) show that the Lebesgue measure is translation invariant: for each Borel measur-
able set A and x ∈ Rk, λk(A) = λk(x+ A), where x+ A = {x+ y, y ∈ A}. Hint:
use the good set principle to show that the class of sets A such that A + x ∈ Bk
for all x ∈ Rk coincides with Bk and then show – using the uniqueness theorem
for measures – that any measure µ such that, for any fixed x, µ(A) = λk(A + x)
for all A ∈ Bk coincides with λk.

(b) Use the fact (which you do not need to prove!) that, for any σ-finite measure µ
on (Ω,F), only countably many disjoint sets in F can have positive measure to
conclude that λk(H) = 0 for any subspace of dimension less than k. (In fact, the
same conclusion holds for any affine subspace of dimension less than k, where an
affine subspace is a set of the form x + S = {x + y, y ∈ S} for a linear subspace
S and a point x ∈ Rk).

10. Use Kolmogorov’s extension theorem to demonstrate the existence of a probability
distribution over infinite sequences of fair coin tosses. In fact, in this case we can
construct such measure explicitly and without relying on Kolmogorov’s theorem. Let
Ω be the unit interval (0, 1) equipped with the σ-field of Borel subsets and the Lebesgue
measure P. Let Yn(ω) = 1 if [2nω] (the integral part of 2nω) is odd and 0 otherwise.
Show that Y1,Y2,... are independent with P (Yk = 0) = P (Yk = 1) = 1/2 for all k. For
any ω ∈ Ω, the binary sequence {Yn(ω), n = 1, 2, . . .} is the corresponding sample path
of the process.
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