36-752, Spring 2018
Homework 2 Solution

Due Thu March 1, by 5:00pm in Jisu’s mailbox.

Points: 100 pts total for the assignment.

1. Let P and @ two probability measures on some measurable space (€2, F) and let p be
any o-finite measure on that space such that both P and @) are absolutely continuous
with respect to p (for example, you may take p = P + Q). Let p = and q= dQ be
the corresponding Radon-Nykodim derivatives.

The total variation distance between P and () is defined as

drv(P,Q) = sup |[P(A) — Q(A)].
AeF
This is a very strong notion of distance between probability distributions: if dry (P, Q) <
€, for some small € > 0, then any probabilistic statement involving P will differ by at
most € from the corresponding statement involving Q).

(a) Show that drv is a metric over the set of all probability measure on (€2, F). In
particular, drv(P,Q) = 0 if and only if P = Q.

(b) Show that drv(P, Q) =1 if and only if P and @ are mutually singular.

(c) Prove that the following equivalent representation of the total variation distance:

drv(P,Q) = / P — q|dp.

Thus, the total variation distance is half the L; distance between densities.
Hint: in the definition of total variation distance you may want to take A = {q >
p}. Show that the supremum is achieved by this set...

(d) Total variation distance and hypothesis testing. Let X be a random vari-
able taking values in some measurable space (5,.4). Suppose we are interested in
testing the null hypothesis that the distribution of X (a probability measure on
(S,.A)!) is P versus the alternative hypothesis that it is . We do so by devising
a test ¢, which is a measurable function from S into {0,1} such that ¢(z) = 1
(resp. ¢(x) = 0) signifies that the null hypothesis is rejected (resp. not rejected)
if X takes on the value x. To measure the performance of a given test function ¢
we evaluate its risk, defined as the sum of type I and type II errors:

Rpq(¢) =/S¢dP+/S(1—¢)dQ.

Show that
igf Rpq(¢) =1 —drv(P,Q),



where the infimum si over all test functions.
The above result formalizes the intuition that the closer P and ) are, the harder
it is to tell them apart using any test function. In particular, Rpg(¢) = 0 — i.e.,
it is possible to perfectly discriminate between P and () — if and only if the two
probability measures are mutually singular.

Hint: use the Neymann-Pearson approach and take ¢ to be the indicator function
of the set {q > p}.

Points: 10 pts =2 4+ 3 + 3 + 2.

Solution.
Let Ap:={w € Q: q(w) > p(w)}.We first show that

drv(P.Q) = Q(Ag) — P(Ay) = P(A5) — Q(AD).

Note that g —p >0 on Ag and ¢ —p < 0 on Ag. Hence for any A € F,

Q(A) — P(A) = / (¢ - p)du

A

=/ (q—p)du+/ (g —p)du
ANAg ANAS
< / (¢ — p)dp

ANAg

S/A (¢ —p)du
= Q(Ao) — P(Ao).

Similarly,

P(A) — Q(A) = / (b - q)dn

A

= /AMO(p —q)dp + /AmAﬂ (p—q)du
< /AMB (p — q)du
S/A (p — q)du

C
0

= P(A}) — Q(AD).

And P(4g)+ P(A§) = Q(A¢) +Q(AL) = 1 gives Q(Ag) — P(A) = P(AL) — Q(AY).
And hence for all A € F,

|P(A) — Q(A)| < Q(Ag) — P(Ag) = P(A5) — Q(A).
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Hence taking sup over A € F gives

dry (P, Q) = sup |P(A) — Q(A)] < Q(Ag) — P(Ag) = P(AS) — Q(AL).

AeF

And since Ag € F, Q(Ay) — P(Ag) = P(AL) — Q(AY) < dpy (P, Q) is trivial, and
hence
drv(P,Q) = Q(Ao) — P(Ay) = P(A5) — Q(A7).

(a)
Let P, (), R be probability measures on (€2, F). First, dpy (P, Q) = sup e 7 |P(A)—
Q(A)| > 0. Second,

drv(P,Q) =0 < sup |P(A) —Q(A)] =0
< forall Ae F, P(A)=Q(A)
= P=0Q.

Third, dry (P, Q) = super [P(A) = Q(A)| = sup ez [Q(A) — P(A)| = drv(Q, P).
Forth,

dry(P, R) = sup |P(A) — R(A)|
< ilelgﬂP(A) — Q(A)| +|Q(A) — R(4)])
< sup [P(A) — Q(A)| + sup |Q(A) — R(A)|
AceF AeF
=dry(P,Q) +dry(Q, R).

Hence dry is a metric over the set of all probability measure on (€2, F).

(b)
Let Ag ={w € Q: q(w) > p(w)} be from above. When dry (P, Q) = 1, then

drv(P,Q) = Q(A) — P(Ag) = P(A7) — Q(AF) = 1.

Then

and hence P(Ay) = Q(AS) = 0. Since AgNAS = @), P and Q are mutually singular.

When P and @ are mutually singular, there exists B € F with P(B) = 0 and
Q(B®) = 0. Then P(B%) = Q(B) = 1, and hence

Q(B) — P(B) = P(B%) — Q(B") = 1.
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Then
drv (P, Q) = sup [P(4) = Q(A)] 2 [P(B) = Q(B)| = 1.
And since dry (P, Q) = supyer |P(A) — Q(A)| <1,

drv (P, Q) = iléglP(A) —Q(A)| =1

()
Let Ag ={w € Q: ¢(w) > p(w)} be from above. Then

drv(P.Q) = Q(Aq) — P(Ay) = / (4 - p)dp

{¢>p}
= / lp — qldp,
{¢>p}

where last line is from that ¢ — p = |p — ¢q| on {¢ > p}. And similarly,

dry(P,Q) = P(A}) — Q(AS) = / (p—q)dp

{p>q}
= / lp — qldp,
{p>q}

where last line is from that p — g = |p — ¢| on {p > ¢}. And hence

1 1
tPQ =3 [ w—ddntg [ ol
q>p p>q
1
= - — qldu.
2/le qldp

drv(P,Q) = / (¢ —p)dp

{¢>p}

= / (¢ — min{p, q})dp + / (¢ —min{p, ¢})dp
{¢>p} {r>q}
= / qdp — / min{p, ¢}dp
Q Q

=1- / min{p, q}dy.
Q

Also, note that

And hence ]
drv(P,Q) = 5/ lp — qldu
Q
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(d)
Since ¢ : S — {0,1}, ¢(w) = Ljug(w)=13(w). And hence

Reolo) = [ aap+ [ (1= o)

- (fo o)
=1- (/Sl{qs:l}dQ —/Sl{qs:l}dp>

=1-(Q{e=1}) - P({o=1}))
Z 1-— dTV(PvQ)a

and the inequality holds if and only if Q({¢ = 1}) — P({¢ = 1}) = drv(P, Q).
Also, when ¢(w) = lyug)>pw} (W), then {¢p = 1} = {q > p} implies Q({¢ =
1}) = P{¢ = 1}) = dry(P,Q), and hence Rpg(¢) = 1 — dry (P, Q) holds. And
hence

igf Rpq(¢) =1 —drv(P,Q).

2. Another way of quantifying how close two probability measures on some measurable
space (), F) are is to compute their Kullback-Liebler (KL) divergence, defined as

Q .
K(P.Q) :{ ({OlongdP if P<<@

otherwise.

If P and @ are both absolutely continuous with respect to a o-finite measure pu, then,

assuming P << Q, K(P,Q) = [ log (%

of P and @, respectively. In general K (P, () is not a metric over the space of proba-
bility measures on (2, F): K is not symmetric!

) p(w)dp(w) where p and g are the p-densities

(a) Use Jensen inequality to show that K(P,Q) > 0 with equality if and only if
P=qQ.

(b) Take (2, F) to be (R¥, B¥) and let P = {P, 0 € R*} where Py is the multivariate
k-dimensional normal distribution with covariance matrix ¥ and mean 6 (thus,
¥ is the common covariance matrix of all the Py’s). Compute K (P, , Pp,) for all
Py, and Py, in P. Conclude that, over P, K behaves like a metric (which one?).

(c) Take (€2, F) to be (R, B) and, for any 6 > 0, let Py be the distribution Uniform(0, ).
Compute K(Py,, Pp,) for all 61,05 € (0, 00).

Points: 10 pts =5 + 2 + 3.



Solution.

(a)
First, when P is not absolutely continuous with respect to @, then P # ) and
K(P,Q) = oo > 0 holds.

Second, when P < @, let Q := {w: dQ( w) > 0} Then on 5, P < @ and

-1
Q < P as well, and & = (4& on Qy. And also
P aQ

dP
va%%iémdpzz%z%ﬂQ_o

and hence P(€)y) = P(2) = 1. Hence applying Jensen inequality on a convex
function ¢(z) = —logz gives

/ log Z—gdP /QO — log (Zg) dP
> —log (/Q Z—gdp)
([
()

Now, the second equality holds if and only if fQ\QO dQ =0, i.e. Q(2\) =0 and
Q) = 1. Also since p(x) = —logx is strictly convex, the first equality holds
if and only 1f 99 is a point mass under P on (, i.e. if and only if there exists

a € R such that dQ = a a.e. under P on (). Then if two equality holds, then

/ dQ P —fﬂ adP = aP(Q )
0, AP | = [, dQ = Q() =

and hence a = 1. Then for all A € (),

= / dP = / dP
A ANQo

= /mo Q"0 [0
=Q(ANQY) = Q(A),

and hence P = Q.
And when P = @, then %€ =1 a.e. [P], and hence K (P,Q) = 0.
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Hence K(P,Q) > 0 holds with equality if and only if P = Q.

(b)
Let po(z) = \/21”—‘2‘ exp (= (z — 0) TS (z — 6)) be the pdf of Py on R*. Then

dP91 _ Do, (.l’)

dP92 ! p92<1‘)
(l‘ — 01)T2_1<$ — Ql) + 1(!13 — 02>T2_1({E — 92))

= exp (— 5
= exp ((01 — 92)TZ_1 (x — @)) )

Let X ~ Pp,, then Ep, [X] = 6;, and hence

DN | —

dPb,
KL(P@U Pg2) = ]EP01 |:10g (dpzl (X))}

:E%[wy_@fz*(X—ef;%)]

1
:?a—%Fy%m—%)

Hence KL(Py,, Py,) = KL(Py,, Py, ), i.e. KL is symmetric. In fact, \/2KL(-,-) is
a Mahalanobis distance.

()

When 6, > 65, then Py, ((02,601)) > 0 but Pp,((0s,61)) = 0, so Py, is not absolutely
continuous with respect to 65, and hence K L(FPy,, Pp,) = co. When 6, < 05, let
po(x) = §I10,)(x) be the pdf of Py on R. Then

dP91 ) = p91<CL’) _ %1(0791)(1’)

APy, pa () 5l ()
02
= 0—1](0791)($).

And hence K L(Py,, Py,) can be computed as




And hence

1 (9—) it 6, < 0,

KL(PGUP@Q): o " 1 o

© ] if 01 > 92.
Remark. )
In (a), note that [ (%) dP need not equal to 1 unless P < @ and Q < P. For
example, suppose P and @ has densities p(w) = I(o1)(w) and g(w) = 31102 (w)
with respect to a Lebesgue measure p. Then j—g(w) = 2[p,1y(w) a.e. with respect

-1
to . But [ (45)  dP = [ 3londp =14 # 1, while [dQ = 1.

3. Riemann versus Lebesgue Integral. Let f(z) = (j)n iftn—1< 22 < n for
n=1,2,.... We saw in class that fooo f(z)dzx exists as an improper Riemann integral
since

lim /Ob f(z) = —log2.

b—o0

Show however that f is not Lebesgue integrable over [0, 00). Hint: it is enough to show
that [~ |f| = oc.

In contrast, show that the function f: [0, 1] — {0, 1} such that f(z) = 1 if = is rational
and 0 otherwise is such that fol f(z)d\(z) = 0 but it is not Riemann integrable. Hint:
you will need the result in the next exercise.

Points: 10 pts.

Solution.
Let f(z) = (_;)n ifn—1<ux<nforn=12,.... Note that for all x > 0,
n— 1<z implies |f(z)| =1 < —, and hence

| @l < [T o= logte+ 1) = o

And hence f is (improper) Riemann integrable but not Lebesgue integrable over

[0, 00).
Now, let f:[0,1] — {0,1} such that f(z) = 1 if z is rational and 0 otherwise.
Then
1 1
/ f(z)d\(x) :/ Tgnpa)(2)dA(x)
0 0
=AQnN10,1])
= > A=}
zeQNI0,1]
= ) o0=o0.
2€Qn|0,1]



To see whether f is Riemann integrable, let 0 =ty < --- < t,, = 1 be a partition.
Then since [t;_1,;] contains both rational and irrational numbers,

2y O 1) = 0 (it

m

sup  f(£)(t; — tiq) let—t,l Z(ti—ti_l)zl.

i=1 telti-1:ti] i=1

Hence upper Riemann sum is always 1 and lower Riemann sum is always 0.
Hence they don’t converge as partition becomes finer, and hence f is not Riemann
integrable.

4. Show that the Lebesgue measure and any counting measure over a countable subset of
R* (for example, the set of rationals) are mutually singular.

Points: 10 pts.

Solution.

Let Ag = {z,, : n € N} C R¥ be a countable subset of R*¥. Let X be the Lebesgue
measure and p4, be the counting measure over Ay defined as pa,(A) = [AN Ag|.
Then since A({x,}) =0 for all n € N,

Ag) = A({zn}) =0.
n=1
And pi4,(A%) = A9 N ALY = 0, and hence A and i, are mutually singular.

5. Let f be an integrable real-valued function over a measure space (€2, F, P). Show that
f is finite almost everywhere [u]. Hint: you may assume that f > 0 then you only need
to show that f < oo almost everywhere [pu).

Points: 10 pts.

Solution.
Let A, = fTI(R\(-n,n)) = {weQ: |f(w)] >n}. Then |f| > n on A,, and
hence
wildn) = [ wdw [ Ifidn< [ 17l
A A Q
and hence

(4 <5 [ 17ldu



Now, A, | Aso = {w € Q: |f(w)| = oo}, then from the continuity of measure,
M(Aoo) = ﬂ(hm An) = hmﬂ(An)

1
glim—/|f]d,u20.
nn Jo

And hence u(Ay) =0, and f is finite almost everywhere [].

6. Assume that f and g are simple functions on some measure space (€2, F, ). Prove

that, for all a,b € R,
/(af—l—bg)d,u = a/fdu+b/gdu.

Points: 10 pts.

Solution.

Note first that if f = > ", a;l4, with A; being disjoint (while a;’s are not nec-
essarily disjoint), then [ fdu = >""", a;u(A;). This is since once we rewrite f as
f=2"m0 I, =30 biluj_k:le with b;’s being distinct and {(b;, B; ;)} =
{(a;, A;)}, then

n n i

/fdM = (VS Big) = > b > u(Byy)
i=1 =1 g=1
n ik

i=1 j=1

Now, since f and g are simple functions, f = " a;l4, and g = Z?:1 biIp,
for some a;,b; # 0 and A;, B; € F. We let Ay = Ul_B; — UL A;, By =
U;ilA’L — U?lej, and let ag — bo = 0. Then

af +bg = Z Z(aai +bbj)14,n8;,

i=0 j=0
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and A; N B; are pairwise disjoint, and hence

/(af + bg)dp = Z (aa; + bbj)u(A; N By)

=0 j=0
= GZGZZM(Az N BJ> + beJZ/“L<AZ N BJ)
=0 7=0 7=0 =0
—a Y ap(A)+bY biu(B))
i=0 Jj=0

:a/fdu—i-b/gdp,

where the second-to-last step is from that A; = Uj_y(A;N B;) and B; = U, (A4;N
B;) and A; N B; being disjoint.

7. Let {f.} be a sequence of non-negative functions on some measure space (€, F, ).
Assume that [ f,dp — 0. Prove or disprove (with a counter-example): f, — 0 a.e.[u].

Points: 10 pts.

Solution.

fn need not converges to 0 a.e. [u]. In fact, it is possible that f,(w) - 0 for all
w e Q.

Let Q =[0,1), F =Borel sets of 2, and u be the Lebesgue measure. For n € N,
let m := |logyn] so that 2™ < n < 2™*! and define f, : [0,1) — [0, 00) be

£ ) ::[<we {n;mgmﬁ—s:ﬂ))

Then [ fodp = sy < % — 0 as n — oo. However, fix w € [0, 1), then for all

9llogon] —

m € N, there exists 0 < k < 2™ with 2% <w< % Then

fomip(w) =1 (w € {2%, %)) =1

Since such k exists for each m € N, f,(w) = 1 for infinitely many n, and hence
fn(w) - 0 for all w € Q.

8. Let (4, F1), ..., (%, Fi) be k measurable spaces. For j =1,...,k let m;: [[, € —
(2 denote the coordinate projection mapping given by m;(ws, ... ,w;) = w;. Show that
the product o-field ®f:1 F; is the o-field generated by all the coordinate projections.

Points: 10 pts.
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Solution.

Let Fo = {A; x -+ x Ay : A; € F}, so that F = o(Fy). Let Gy = {m; *(A;) :
A; € F;} and let G := 0(Gy). We would like to show F = G.

(G C F):

Since 7, H(Ay) = Qp X - x Qi X Ay X Qip1 X - X Q, Go C Fo, and hence
Go C 0(Fy) = F. Then since F is a o-field containing Gy, 0(Gy) C F as well, i.e.
G C F holds.

(FCg):

Note that for all A; € Fy, [Tl A = N, 7 (A;) € G since G is a o-field. Hence
Fo C G. Then since G is a o-field containing Fy, o(Fy) C G as well, i.e. F C G
holds.

Hence F =G, i.e. ®f:1 F; is the o-field generated by all the coordinate projec-
tions.

9. Let \; denote the k-dimensional Lebesgue measure and H be a linear subspace in R¥
of dimension no larger than k£ — 1. Show that A\¢(H) = 0. You may proceed as follows:

(a)

show that the Lebesgue measure is translation invariant: for each Borel measur-
able set A and x € R¥, A\i(A) = M\(z + A), where v + A = {x +y,y € A}. Hint:
use the good set principle to show that the class of sets A such that A+ x € BF
for all x € R¥ coincides with B¥ and then show — using the uniqueness theorem
for measures — that any measure p such that, for any fized x, u(A) = A\,(A + x)
for all A € B coincides with \y.

Use the fact (which you do not need to prove!) that, for any o-finite measure p
on (2, F), only countably many disjoint sets in F can have positive measure to
conclude that Ax(H) = 0 for any subspace of dimension less than k. (In fact, the
same conclusion holds for any affine subspace of dimension less than k, where an
affine subspace is a set of the form z + S = {x + y,y € S} for a linear subspace
S and a point x € R¥).

Points: 10 pts =7 + 3.

Solution.

(a)

We show that for all x € RF | \(z + A) = \(A). Fix any x € R* and let
T, : R* — R* be a translation as T,(y) = y — x, then z+ A = T, *(A). Then since
T, : R* — R* is continuous and hence measurable, A € B* implies z + A € B*.
Now consider the induced measure p on (R, B¥) as u(A) = M\ (T, 1(A)), ie.

u(A) = Moz + A). Let I = {T]*,(as, b € B* : a; < b;}. Then (Hle(ai, b,.]) N
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<Hf:1(ci’ dl]> = 1., (max{a;, ¢;}, min{b;, d;}] € TI, so 11 is a 7m-system. Now,
note that A\ (Hle(ai, bz]) = Hle(bi —a;) and

i=1 i=1 i=1 =1
and hence A\, = p on II. Also, note that {Hle(ni,m +1]:n; € Z} covers R”

and g (Hle(ni,ni + 1]) = M\ (Hle(ni,ni + 1]> = 1, and hence both px and A
are o-finite on II. Then from uniqueness of the measure, p and A, agree on
o(Il) = B*. ie. p(A) = M\p(z + A) = M\ (A) for all x € R* and A € B*.
(b)
We show that \i(H) = 0 for any subspace H # R*. Choose x € R¥\ H. Then for
teR,

yetr+H < y—tre H.

Hence for t; # to € R, y € (tyz + H) N (tox + H) implies y — t1x, y — tox € H,
and then

v — (y — tiz) — (y — ) e

lo — 11

which is a contradiction. Hence (tyx + H) N (tex + H) = 0 if t; # t5. Then
{tx + H : t € R} are uncountably many disjoint sets.
Now, if A\g(H) > 0, then from above, \g(tx + H) > 0 for all ¢ € R. Then
{tx + H : t € R} are uncountably many disjoint sets with all positive measures,
which is impossible. Hence Ay(H) = 0.

Remark.

In (a), we showed the measurability of x + A by using the measurable function 7,
defined as T, (y) = y — = and using that z + A = T, !(A). An alternative is to use
good set principle as follows. Let T := {A eBF:forallz eRF 2+ A€ Bk},
and we show that 7 = B*. We first check that T is o-algebra. First, z + RF =
RF € B* for all € R*, and hence R¥ € T. Second, if A € T, then for all z € R¥,
z+ A € B*, and B being a o-field implies = + A® = (z + A)® € B*, and hence
A% € T. Third, suppose {A4,}2>, C T, then for all z € R*, x + A, € B for all
n € N. Then B* being a o-field implies z +J,, A, = U, (z + A,,) € B¥, and hence
U, A. € T. Hence T is a o-field. Also, let O = {A C RF : A open}, then A
being open implies that for all # € R*, x + A is also open, and hence z + A € B*
and hence O C T. Then since B¥ = ¢(O) and T is a o-field, B* C T holds. Since
T C B* from the definition of T, 7 = B*.

Also, checking the sigma-finiteness of © and A is critical in the proof. Suppose
we have jy on (RF, B¥) as jg(A) = oo for all A € B*, and we have constructed
Iy = {Hle(—oo, a;] € B¥ : a; € R}. Then Il is a m-system and pg = Ay on I,
but o and ), do not agree on o(Ily) = B*.

13



10. Use Kolmogorov’s extension theorem to demonstrate the existence of a probability
distribution over infinite sequences of fair coin tosses. In fact, in this case we can
construct such measure explicitly and without relying on Kolmogorov’s theorem. Let
2 be the unit interval (0, 1) equipped with the o-field of Borel subsets and the Lebesgue
measure P. Let Y, (w) = 1 if [2"w] (the integral part of 2"w) is odd and 0 otherwise.
Show that Y7,Y5,... are independent with P(Y, = 0) = P(Y, = 1) = 1/2 for all k. For
any w € 2, the binary sequence {Y,,(w),n = 1,2,...} is the corresponding sample path
of the process.

Points: 10 pts.

Solution.

Note first that if a random variable Y,, takes either 0 or 1 as its value, o(Y;,) =
{Y-1(I): T c{0,1}}. Hence showing independence of Y},Y5, ... is equivalent to
showing that for any I,,, C {0, 1},

P (ﬂ Yn;l(fm)> = HP(Y;}([M)).

First, we use Kolmogorov’s extension theorem to demonstrate the existence of a
probability distribution over infinite sequences of fair coin tosses. Consider RY.
For each n € N, consider a measurable space (R,5). Then, for all v C N with
lv| < oo, let (R, BY) be the corresponding product space and product o-field.
Let PV be a probability measure on (RY, B”) defined as for all B € BY,

pr(p) B0 1F m2{|2|, il

Then PV is a normalized counting measure with PY(R") = 1, and hence P, is a
probability measure. Also, for any v C v C N and for all B € BY,

mu(P°)(B) = P'({x € R" : z, € B})
_ {x eR": z, € B}N{0,1}"|

2v]
~ e eRY:z, € BN{0, 1}z, € {0,1}"\}]
N ool
~ HzeR": z, € Byn{0,1}¥] x [{0, 1}|\
B olul 5 lu\v]

= P%(B).
Hence {P": v C N, |v| < oo} is a consistent set of probability measures. Hence

from Kolmogorov’s extension theorem, there exists a unique probability measure
P on (RY, ®,enB) such that 7, (P) = PV for all finite v C N. Now, define random
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variables {X,, }nen on RY as X,,(w) = wy,. Then for any I,,,,..., I, C {0,1}, let
vo = {n1,...,ng}, then

P (ﬂx;,l(fm)) =P{zeRV:a, €l,})=P ({x eRY: 1, € an}>
(P (ﬁ 1> _pm (ﬁ 1)

k v
o] e,

2lvol 2k

And hence

I e (e ]

Therefore, such {X,, : n € N} is independent.

Second, we show that {Y}, }en, constructed as Y,,(w) = 1 if [2"w] odd and Y,,(w) =
0 if [2"w] even, is a sequence of independent variables. Let N := max{n,...,ng}
and consider the map Yi.n : Q — {0,1}¥ as Yi.y = (Y1,...,Yy). For 1 <n < N,
define 7, : {0,1}¥ — {0,1} be the n'"* coordinate map as m,(y1,...,yn) = Yn.
Then Y, = 7, o Yi.y and hence Y, 1(I) = Y v (7, 1(I)). Now, define the induced
measure Q on ({0,1}N,20080%Y a5 Q(J) = P(Y{1(J)) for all J  {0,1}". Then
for any I,,,,..., I, C {0,1},

P (ﬂ Ynt-l(Im)) =P (ﬂ K?&(w;l(fni))) =P (Y&% (ﬂ m;%»))
= Q (ﬂ W;ZI(IM)) ’

hence showing the independence of P is equivalent to showing that

Let ¢ : {0,1}N = {0,...,2¥ —1} as o(y) = 2N, 9,2V, Then for all w €
[%, %) N (0,1), Y,,(w) =y, holds for all 1 <n < N, and hence Y;.y(w) = y.

Since ¢ is one-to-one and onto, Y, x({y}) = [%, %) N (0,1), and hence

ot =7 (52 205 n o) - 5
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ie. @ is a uniform measure and Q(J) = |2iN‘ Then from ﬂz VT (L) =

{y € {0,1}": Ny Wﬁl(]ni) — 9N-KT%, |I,,,], and hence

k _ k k
Q (ﬂ M(M) = kgfv:l Il e VL
=1 3
k 2N 1|[
[Je (. (1)) = H nil =9~ ’fHum
=1

i=1
and hence @ (ﬂz T (]ni)> =TI- 1 Q (7,1 (1,)). Therefore, such {Y,, : n € N}
is independent.

Uz
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