
36-752, Spring 2018
Homework 2 Solution

Due Thu March 1, by 5:00pm in Jisu’s mailbox.

Points: 100 pts total for the assignment.

1. Let P and Q two probability measures on some measurable space (Ω,F) and let µ be
any σ-finite measure on that space such that both P and Q are absolutely continuous
with respect to µ (for example, you may take µ = P +Q). Let p = dP

dµ
and q = dQ

dµ
be

the corresponding Radon-Nykodim derivatives.
The total variation distance between P and Q is defined as

dTV(P,Q) = sup
A∈F
|P (A)−Q(A)|.

This is a very strong notion of distance between probability distributions: if dTV(P,Q) <
ε, for some small ε > 0, then any probabilistic statement involving P will differ by at
most ε from the corresponding statement involving Q.

(a) Show that dTV is a metric over the set of all probability measure on (Ω,F). In
particular, dTV(P,Q) = 0 if and only if P = Q.

(b) Show that dTV(P,Q) = 1 if and only if P and Q are mutually singular.

(c) Prove that the following equivalent representation of the total variation distance:

dTV(P,Q) =
1

2

∫
Ω

|p− q|dµ.

Thus, the total variation distance is half the L1 distance between densities.
Hint: in the definition of total variation distance you may want to take A = {q ≥
p}. Show that the supremum is achieved by this set...

(d) Total variation distance and hypothesis testing. Let X be a random vari-
able taking values in some measurable space (S,A). Suppose we are interested in
testing the null hypothesis that the distribution of X (a probability measure on
(S,A)!) is P versus the alternative hypothesis that it is Q. We do so by devising
a test φ, which is a measurable function from S into {0, 1} such that φ(x) = 1
(resp. φ(x) = 0) signifies that the null hypothesis is rejected (resp. not rejected)
if X takes on the value x. To measure the performance of a given test function φ
we evaluate its risk, defined as the sum of type I and type II errors:

RP,Q(φ) =

∫
S

φdP +

∫
S

(1− φ)dQ.

Show that
inf
φ
RP,Q(φ) = 1− dTV(P,Q),
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where the infimum si over all test functions.
The above result formalizes the intuition that the closer P and Q are, the harder
it is to tell them apart using any test function. In particular, RP,Q(φ) = 0 – i.e.,
it is possible to perfectly discriminate between P and Q – if and only if the two
probability measures are mutually singular.
Hint: use the Neymann-Pearson approach and take φ to be the indicator function
of the set {q ≥ p}.

Points: 10 pts = 2 + 3 + 3 + 2.

Solution.

Let A0 := {ω ∈ Ω : q(ω) ≥ p(ω)}.We first show that

dTV (P,Q) = Q(A0)− P (A0) = P (A{
0)−Q(A{

0).

Note that q − p ≥ 0 on A0 and q − p < 0 on A{
0. Hence for any A ∈ F ,

Q(A)− P (A) =

∫
A

(q − p)dµ

=

∫
A∩A0

(q − p)dµ+

∫
A∩A{

0

(q − p)dµ

≤
∫
A∩A0

(q − p)dµ

≤
∫
A0

(q − p)dµ

= Q(A0)− P (A0).

Similarly,

P (A)−Q(A) =

∫
A

(p− q)dµ

=

∫
A∩A0

(p− q)dµ+

∫
A∩A{

0

(p− q)dµ

≤
∫
A∩A{

0

(p− q)dµ

≤
∫
A{

0

(p− q)dµ

= P (A{
0)−Q(A{

0).

And P (A0)+P (A{
0) = Q(A0)+Q(A{

0) = 1 gives Q(A0)−P (A0) = P (A{
0)−Q(A{

0).
And hence for all A ∈ F ,

|P (A)−Q(A)| ≤ Q(A0)− P (A0) = P (A{
0)−Q(A{

0).
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Hence taking sup over A ∈ F gives

dTV (P,Q) = sup
A∈F
|P (A)−Q(A)| ≤ Q(A0)− P (A0) = P (A{

0)−Q(A{
0).

And since A0 ∈ F , Q(A0)− P (A0) = P (A{
0)−Q(A{

0) ≤ dTV (P,Q) is trivial, and
hence

dTV (P,Q) = Q(A0)− P (A0) = P (A{
0)−Q(A{

0).

(a)

Let P,Q,R be probability measures on (Ω,F). First, dTV (P,Q) = supA∈F |P (A)−
Q(A)| ≥ 0. Second,

dTV (P,Q) = 0 ⇐⇒ sup
A∈F
|P (A)−Q(A)| = 0

⇐⇒ for all A ∈ F , P (A) = Q(A)

⇐⇒ P = Q.

Third, dTV (P,Q) = supA∈F |P (A)−Q(A)| = supA∈F |Q(A)−P (A)| = dTV (Q,P ).
Forth,

dTV (P,R) = sup
A∈F
|P (A)−R(A)|

≤ sup
A∈F

(|P (A)−Q(A)|+ |Q(A)−R(A)|)

≤ sup
A∈F
|P (A)−Q(A)|+ sup

A∈F
|Q(A)−R(A)|

= dTV (P,Q) + dTV (Q,R).

Hence dTV is a metric over the set of all probability measure on (Ω,F).

(b)

Let A0 = {ω ∈ Ω : q(ω) ≥ p(ω)} be from above. When dTV (P,Q) = 1, then

dTV (P,Q) = Q(A0)− P (A0) = P (A{
0)−Q(A{

0) = 1.

Then

P (A0) = Q(A0)− 1 ≤ 0,

Q(A{
0) = P (A{

0)− 1 ≤ 0,

and hence P (A0) = Q(A{
0) = 0. Since A0∩A{

0 = ∅, P and Q are mutually singular.

When P and Q are mutually singular, there exists B ∈ F with P (B) = 0 and
Q(B{) = 0. Then P (B{) = Q(B) = 1, and hence

Q(B)− P (B) = P (B{)−Q(B{) = 1.
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Then
dTV (P,Q) = sup

A∈F
|P (A)−Q(A)| ≥ |P (B)−Q(B)| = 1.

And since dTV (P,Q) = supA∈F |P (A)−Q(A)| ≤ 1,

dTV (P,Q) = sup
A∈F
|P (A)−Q(A)| = 1.

(c)

Let A0 = {ω ∈ Ω : q(ω) ≥ p(ω)} be from above. Then

dTV (P,Q) = Q(A0)− P (A0) =

∫
{q≥p}

(q − p)dµ

=

∫
{q≥p}

|p− q|dµ,

where last line is from that q − p = |p− q| on {q ≥ p}. And similarly,

dTV (P,Q) = P (A{
0)−Q(A{

0) =

∫
{p>q}

(p− q)dµ

=

∫
{p>q}

|p− q|dµ,

where last line is from that p− q = |p− q| on {p > q}. And hence

dTV (P,Q) =
1

2

∫
{q≥p}

|p− q|dµ+
1

2

∫
{p>q}

|p− q|dµ

=
1

2

∫
Ω

|p− q|dµ.

Also, note that

dTV (P,Q) =

∫
{q≥p}

(q − p)dµ

=

∫
{q≥p}

(q −min{p, q})dµ+

∫
{p>q}

(q −min{p, q})dµ

=

∫
Ω

qdµ−
∫

Ω

min{p, q}dµ

= 1−
∫

Ω

min{p, q}dµ.

And hence

dTV(P,Q) =
1

2

∫
Ω

|p− q|dµ
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(d)

Since φ : S → {0, 1}, φ(ω) = 1{ω:φ(ω)=1}(ω). And hence

RP,Q(φ) =

∫
S

φdP +

∫
S

(1− φ)dQ

= 1−
(∫

S

φdQ−
∫
S

φdP

)
= 1−

(∫
S

1{φ=1}dQ−
∫
S

1{φ=1}dP

)
= 1− (Q({φ = 1})− P ({φ = 1}))
≥ 1− dTV (P,Q),

and the inequality holds if and only if Q({φ = 1}) − P ({φ = 1}) = dTV (P,Q).
Also, when φ(ω) = 1{ω:q(ω)≥p(ω}(ω), then {φ = 1} = {q ≥ p} implies Q({φ =
1}) − P ({φ = 1}) = dTV (P,Q), and hence RP,Q(φ) = 1 − dTV (P,Q) holds. And
hence

inf
φ
RP,Q(φ) = 1− dTV (P,Q).

2. Another way of quantifying how close two probability measures on some measurable
space (Ω,F) are is to compute their Kullback-Liebler (KL) divergence, defined as

K(P,Q) =

{ ∫
log dP

dQ
dP if P << Q

∞ otherwise.

If P and Q are both absolutely continuous with respect to a σ-finite measure µ, then,

assuming P << Q, K(P,Q) =
∫

log
(
p(ω)
q(ω)

)
p(ω)dµ(ω) where p and q are the µ-densities

of P and Q, respectively. In general K(P,Q) is not a metric over the space of proba-
bility measures on (Ω,F): K is not symmetric!

(a) Use Jensen inequality to show that K(P,Q) ≥ 0 with equality if and only if
P = Q.

(b) Take (Ω,F) to be (Rk,Bk) and let P = {Pθ, θ ∈ Rk} where Pθ is the multivariate
k-dimensional normal distribution with covariance matrix Σ and mean θ (thus,
Σ is the common covariance matrix of all the Pθ’s). Compute K(Pθ1 , Pθ2) for all
Pθ1 and Pθ2 in P . Conclude that, over P , K behaves like a metric (which one?).

(c) Take (Ω,F) to be (R,B) and, for any θ > 0, let Pθ be the distribution Uniform(0, θ).
Compute K(Pθ1 , Pθ2) for all θ1, θ2 ∈ (0,∞).

Points: 10 pts = 5 + 2 + 3.
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Solution.

(a)

First, when P is not absolutely continuous with respect to Q, then P 6= Q and
K(P,Q) =∞ > 0 holds.

Second, when P � Q, let Ω0 :=
{
ω : dP

dQ
(ω) > 0

}
. Then on Ω0, P � Q and

Q� P as well, and dQ
dP

=
(
dP
dQ

)−1

on Ω0. And also

P (Ω\Ω0) =

∫
Ω\Ω0

dP =

∫
Ω\Ω0

dP

dQ
dQ = 0,

and hence P (Ω0) = P (Ω) = 1. Hence applying Jensen inequality on a convex
function ϕ(x) = − log x gives∫

Ω

log
dP

dQ
dP =

∫
Ω0

− log

(
dQ

dP

)
dP

≥ − log

(∫
Ω0

dQ

dP
dP

)
= − log

(∫
Ω0

dQ

)
≥ − log

(∫
Ω

dQ

)
= 0.

Now, the second equality holds if and only if
∫

Ω\Ω0
dQ = 0, i.e. Q(Ω\Ω0) = 0 and

Q(Ω0) = 1. Also, since ϕ(x) = − log x is strictly convex, the first equality holds
if and only if dQ

dP
is a point mass under P on Ω0, i.e. if and only if there exists

a ∈ R such that dQ
dP

= a a.e. under P on Ω0. Then if two equality holds, then∫
Ω0

dQ

dP
dP

{
=
∫

Ω0
adP = aP (Ω0) = a,

=
∫

Ω0
dQ = Q(Ω0) = 1,

and hence a = 1. Then for all A ∈ Ω,

P (A) =

∫
A

dP =

∫
A∩Ω0

dP

=

∫
A∩Ω0

dP

dQ
dQ =

∫
A∩Ω0

dQ

= Q(A ∩ Ω0) = Q(A),

and hence P = Q.

And when P = Q, then dP
dQ

= 1 a.e. [P ], and hence K(P,Q) = 0.
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Hence K(P,Q) ≥ 0 holds with equality if and only if P = Q.

(b)

Let pθ(x) = 1√
2π|Σ|

exp
(
−1

2
(x− θ)>Σ−1(x− θ)

)
be the pdf of Pθ on Rk. Then

dPθ1
dPθ2

(x) =
pθ1(x)

pθ2(x)

= exp

(
−1

2
(x− θ1)>Σ−1(x− θ1) +

1

2
(x− θ2)>Σ−1(x− θ2)

)
= exp

(
(θ1 − θ2)>Σ−1

(
x− θ1 + θ2

2

))
.

Let X ∼ Pθ1 , then EPθ1 [X] = θ1, and hence

KL(Pθ1 , Pθ2) = EPθ1

[
log

(
dPθ1
dPθ2

(X)

)]
= EPθ1

[
(θ1 − θ2)>Σ−1

(
X − θ1 + θ2

2

)]
=

1

2
(θ1 − θ2)>Σ−1(θ1 − θ2).

Hence KL(Pθ1 , Pθ2) = KL(Pθ2 , Pθ1), i.e. KL is symmetric. In fact,
√

2KL(·, ·) is
a Mahalanobis distance.

(c)

When θ1 > θ2, then Pθ1((θ2, θ1)) > 0 but Pθ2((θ2, θ1)) = 0, so Pθ1 is not absolutely
continuous with respect to θ2, and hence KL(Pθ1 , Pθ2) = ∞. When θ1 ≤ θ2, let
pθ(x) = 1

θ
I(0,θ)(x) be the pdf of Pθ on R. Then

dPθ1
dPθ2

(x) =
pθ1(x)

pθ2(x)
=

1
θ1
I(0,θ1)(x)

1
θ2
I(0,θ2)(x)

=
θ2

θ1

I(0,θ1)(x).

And hence KL(Pθ1 , Pθ2) can be computed as

KL(Pθ1 , Pθ2) =

∫
log

(
dPθ1
dPθ2

)
dPθ1

=

∫ θ1

0

log

(
θ2

θ1

)
1

θ1

dx

= log

(
θ2

θ1

)
.
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And hence

KL(Pθ1 , Pθ2) =

{
log
(
θ2
θ1

)
if θ1 ≤ θ2,

∞ if θ1 > θ2.

Remark.

In (a), note that
∫ (

dP
dQ

)−1

dP need not equal to 1 unless P � Q and Q� P . For

example, suppose P and Q has densities p(ω) = I(0,1)(ω) and q(ω) = 1
2
I(0,2)(ω)

with respect to a Lebesgue measure µ. Then dP
dQ

(ω) = 2I(0,1)(ω) a.e. with respect

to µ. But
∫ (

dP
dQ

)−1

dP =
∫

1
2
I(0,1)dµ = 1

2
6= 1, while

∫
dQ = 1.

3. Riemann versus Lebesgue Integral. Let f(x) = (−1)n

n
if n − 1 ≤ x < n for

n = 1, 2, . . .. We saw in class that
∫∞

0
f(x)dx exists as an improper Riemann integral

since

lim
b→∞

∫ b

0

f(x) = − log 2.

Show however that f is not Lebesgue integrable over [0,∞). Hint: it is enough to show
that

∫∞
0
|f | =∞.

In contrast, show that the function f : [0, 1]→ {0, 1} such that f(x) = 1 if x is rational

and 0 otherwise is such that
∫ 1

0
f(x)dλ(x) = 0 but it is not Riemann integrable. Hint:

you will need the result in the next exercise.

Points: 10 pts.

Solution.

Let f(x) = (−1)n

n
if n − 1 ≤ x < n for n = 1, 2, . . .. Note that for all x ≥ 0,

n− 1 ≤ x implies |f(x)| = 1
n
≤ 1

x+1
, and hence∫ ∞

0

|f(x)|dx ≤
∫ ∞

0

1

x+ 1
dx = [log(x+ 1)]∞0 =∞.

And hence f is (improper) Riemann integrable but not Lebesgue integrable over
[0,∞).

Now, let f : [0, 1] → {0, 1} such that f(x) = 1 if x is rational and 0 otherwise.
Then ∫ 1

0

f(x)dλ(x) =

∫ 1

0

IQ∩[0,1](x)dλ(x)

= λ(Q ∩ [0, 1])

=
∑

x∈Q∩[0,1]

λ({x})

=
∑

x∈Q∩[0,1]

0 = 0.
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To see whether f is Riemann integrable, let 0 = t0 < · · · < tm = 1 be a partition.
Then since [ti−1, ti] contains both rational and irrational numbers,

m∑
i=1

inf
t∈[ti−1,ti]

f(t)(ti − ti−1) =
m∑
i=1

0× (ti − ti−1) = 0,

m∑
i=1

sup
t∈[ti−1,ti]

f(t)(ti − ti−1) =
m∑
i=1

1× (ti − ti−1) =
m∑
i=1

(ti − ti−1) = 1.

Hence upper Riemann sum is always 1 and lower Riemann sum is always 0.
Hence they don’t converge as partition becomes finer, and hence f is not Riemann
integrable.

4. Show that the Lebesgue measure and any counting measure over a countable subset of
Rk (for example, the set of rationals) are mutually singular.

Points: 10 pts.

Solution.

Let A0 = {xn : n ∈ N} ⊂ Rk be a countable subset of Rk. Let λ be the Lebesgue
measure and µA0 be the counting measure over A0 defined as µA0(A) = |A ∩A0|.
Then since λ({xn}) = 0 for all n ∈ N,

λ(A0) =
∞∑
n=1

λ({xn}) = 0.

And µA0(A
{
0) = |A0 ∩ A{

0| = 0, and hence λ and µA0 are mutually singular.

5. Let f be an integrable real-valued function over a measure space (Ω,F , P ). Show that
f is finite almost everywhere [µ]. Hint: you may assume that f ≥ 0 then you only need
to show that f <∞ almost everywhere [µ].

Points: 10 pts.

Solution.

Let An = f−1(R̄\(−n, n)) = {ω ∈ Ω : |f(ω)| ≥ n}. Then |f | ≥ n on An, and
hence

nµ(An) =

∫
An

ndµ ≤
∫
An

|f |dµ ≤
∫

Ω

|f |dµ,

and hence

µ(An) ≤ 1

n

∫
Ω

|f |dµ.
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Now, An ↓ A∞ = {ω ∈ Ω : |f(ω)| =∞}, then from the continuity of measure,

µ(A∞) = µ(lim
n
An) = lim

n
µ(An)

≤ lim
n

1

n

∫
Ω

|f |dµ = 0.

And hence µ(A∞) = 0, and f is finite almost everywhere [µ].

6. Assume that f and g are simple functions on some measure space (Ω,F , µ). Prove
that, for all a, b ∈ R, ∫

(af + bg)dµ = a

∫
fdµ+ b

∫
gdµ.

Points: 10 pts.

Solution.

Note first that if f =
∑m

i=1 aiIAi with Ai being disjoint (while ai’s are not nec-
essarily disjoint), then

∫
fdµ =

∑m
i=1 aiµ(Ai). This is since once we rewrite f as

f =
∑n

i=1 bi
∑ik

j=1 IBi,j =
∑n

i=1 biI∪ikj=1Bi,j
with bi’s being distinct and {(bi, Bi,j)} =

{(ai, Ai)}, then ∫
fdµ =

n∑
i=1

biµ(∪ikj=1Bi,j) =
n∑
i=1

bi

ik∑
j=1

µ(Bi,j)

=
n∑
i=1

ik∑
j=1

biµ(Bi,j) =
m∑
i=1

aiµ(Ai).

Now, since f and g are simple functions, f =
∑m

i=1 aiIAi and g =
∑n

j=1 bjIBj
for some ai, bj 6= 0 and Ai, Bj ∈ F . We let A0 = ∪nj=1Bj − ∪mi=1Ai, B0 =
∪mi=1Ai − ∪nj=1Bj, and let a0 = b0 = 0. Then

af + bg =
m∑
i=0

n∑
j=0

(aai + bbj)1Ai∩Bj ,
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and Ai ∩Bj are pairwise disjoint, and hence∫
(af + bg)dµ =

m∑
i=0

n∑
j=0

(aai + bbj)µ(Ai ∩Bj)

= a
m∑
i=0

ai

n∑
j=0

µ(Ai ∩Bj) + b

n∑
j=0

bj

m∑
i=0

µ(Ai ∩Bj)

= a
m∑
i=0

aiµ(Ai) + b

n∑
j=0

bjµ(Bj)

= a

∫
fdµ+ b

∫
gdµ,

where the second-to-last step is from that Ai = ∪nj=0(Ai∩Bj) and Bj = ∪mi=0(Ai∩
Bj) and Ai ∩Bj being disjoint.

7. Let {fn} be a sequence of non-negative functions on some measure space (Ω,F , µ).
Assume that

∫
fndµ→ 0. Prove or disprove (with a counter-example): fn → 0 a.e.[µ].

Points: 10 pts.

Solution.

fn need not converges to 0 a.e. [µ]. In fact, it is possible that fn(ω) 9 0 for all
ω ∈ Ω.

Let Ω = [0, 1), F =Borel sets of Ω, and µ be the Lebesgue measure. For n ∈ N,
let m := blog2 nc so that 2m ≤ n < 2m+1, and define fn : [0, 1)→ [0,∞) be

fn(ω) := I

(
ω ∈

[
n− 2m

2m
,
n− 2m + 1

2m

))
.

Then
∫
fndµ = 1

2blog2 nc
≤ 2

n
→ 0 as n → ∞. However, fix ω ∈ [0, 1), then for all

m ∈ N, there exists 0 ≤ k < 2m with k
2m
≤ ω < k+1

2m
. Then

f2m+k(ω) = I

(
ω ∈

[
k

2m
,
k + 1

2m

))
= 1.

Since such k exists for each m ∈ N, fn(ω) = 1 for infinitely many n, and hence
fn(ω) 9 0 for all ω ∈ Ω.

8. Let (Ω1,F1), . . . , (Ωk,Fk) be k measurable spaces. For j = 1, . . . , k let πj :
∏k

i=1 Ωi →
Ωj denote the coordinate projection mapping given by πi(ω1, . . . , ωk) = ωj. Show that

the product σ-field
⊗k

i=1Fi is the σ-field generated by all the coordinate projections.

Points: 10 pts.
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Solution.

Let F0 = {A1 × · · · × Ak : Ai ∈ Fi}, so that F = σ(F0). Let G0 = {π−1
i (Ai) :

Ai ∈ Fi} and let G := σ(G0). We would like to show F = G.

(G ⊂ F):

Since π−1
i (Ai) = Ω1 × · · · × Ωi−1 × Ai × Ωi+1 × · · · × Ωk, G0 ⊂ F0, and hence

G0 ⊂ σ(F0) = F . Then since F is a σ-field containing G0, σ(G0) ⊂ F as well, i.e.
G ⊂ F holds.

(F ⊂ G):

Note that for all Ai ∈ Fi,
∏k

i=1Ai =
⋂k
i=1 π

−1
i (Ai) ∈ G since G is a σ-field. Hence

F0 ⊂ G. Then since G is a σ-field containing F0, σ(F0) ⊂ G as well, i.e. F ⊂ G
holds.

Hence F = G, i.e.
⊗k

i=1Fi is the σ-field generated by all the coordinate projec-
tions.

9. Let λk denote the k-dimensional Lebesgue measure and H be a linear subspace in Rk

of dimension no larger than k− 1. Show that λk(H) = 0. You may proceed as follows:

(a) show that the Lebesgue measure is translation invariant: for each Borel measur-
able set A and x ∈ Rk, λk(A) = λk(x+ A), where x+ A = {x+ y, y ∈ A}. Hint:
use the good set principle to show that the class of sets A such that A + x ∈ Bk
for all x ∈ Rk coincides with Bk and then show – using the uniqueness theorem
for measures – that any measure µ such that, for any fixed x, µ(A) = λk(A + x)
for all A ∈ Bk coincides with λk.

(b) Use the fact (which you do not need to prove!) that, for any σ-finite measure µ
on (Ω,F), only countably many disjoint sets in F can have positive measure to
conclude that λk(H) = 0 for any subspace of dimension less than k. (In fact, the
same conclusion holds for any affine subspace of dimension less than k, where an
affine subspace is a set of the form x + S = {x + y, y ∈ S} for a linear subspace
S and a point x ∈ Rk).

Points: 10 pts = 7 + 3.

Solution.

(a)

We show that for all x ∈ Rk , λk(x + A) = λk(A). Fix any x ∈ Rk and let
Tx : Rk → Rk be a translation as Tx(y) = y−x, then x+A = T−1

x (A). Then since
Tx : Rk → Rk is continuous and hence measurable, A ∈ Bk implies x + A ∈ Bk.
Now consider the induced measure µ on (Rk,Bk) as µ(A) = λk(T

−1
x (A)), i.e.

µ(A) = λk(x+ A). Let Π = {
∏k

i=1(ai, bi] ∈ Bk : ai ≤ bi}. Then
(∏k

i=1(ai, bi]
)
∩

12



(∏k
i=1(ci, di]

)
=
∏k

i=1(max{ai, ci}, min{bi, di}] ∈ Π, so Π is a π-system. Now,

note that λk

(∏k
i=1(ai, bi]

)
=
∏k

i=1(bi − ai) and

µ

(
k∏
i=1

(ai, bi]

)
= λk

(
k∏
i=1

(xi + ai, xi + bi]

)
=

k∏
i=1

((xi+bi)−(xi+ai)) =
k∏
i=1

(bi−ai),

and hence λk = µ on Π. Also, note that
{∏k

i=1(ni, ni + 1] : ni ∈ Z
}

covers Rk

and µ
(∏k

i=1(ni, ni + 1]
)

= λk

(∏k
i=1(ni, ni + 1]

)
= 1, and hence both µ and λk

are σ-finite on Π. Then from uniqueness of the measure, µ and λk agree on
σ(Π) = Bk. i.e. µ(A) = λk(x+ A) = λk(A) for all x ∈ Rk and A ∈ Bk.
(b)

We show that λk(H) = 0 for any subspace H 6= Rk. Choose x ∈ Rk\H. Then for
t ∈ R,

y ∈ tx+H ⇐⇒ y − tx ∈ H.
Hence for t1 6= t2 ∈ R, y ∈ (t1x + H) ∩ (t2x + H) implies y − t1x, y − t2x ∈ H,
and then

x =
(y − t1x)− (y − t2x)

t2 − t1
∈ H,

which is a contradiction. Hence (t1x + H) ∩ (t2x + H) = ∅ if t1 6= t2. Then
{tx+H : t ∈ R} are uncountably many disjoint sets.

Now, if λk(H) > 0, then from above, λk(tx + H) > 0 for all t ∈ R. Then
{tx+H : t ∈ R} are uncountably many disjoint sets with all positive measures,
which is impossible. Hence λk(H) = 0.

Remark.

In (a), we showed the measurability of x+A by using the measurable function Tx
defined as Tx(y) = y−x and using that x+A = T−1

x (A). An alternative is to use
good set principle as follows. Let T :=

{
A ∈ Bk : for all x ∈ Rk, x+ A ∈ Bk

}
,

and we show that T = Bk. We first check that T is σ-algebra. First, x + Rk =
Rk ∈ Bk for all x ∈ Rk, and hence Rk ∈ T . Second, if A ∈ T , then for all x ∈ Rk,
x + A ∈ Bk, and Bk being a σ-field implies x + A{ = (x + A){ ∈ Bk, and hence
A{ ∈ T . Third, suppose {An}∞n=1 ⊂ T , then for all x ∈ Rk, x + An ∈ Bk for all
n ∈ N. Then Bk being a σ-field implies x+

⋃
nAn =

⋃
n(x+An) ∈ Bk, and hence⋃

nAn ∈ T . Hence T is a σ-field. Also, let O = {A ⊂ Rk : A open}, then A
being open implies that for all x ∈ Rk, x+A is also open, and hence x+A ∈ Bk
and hence O ⊂ T . Then since Bk = σ(O) and T is a σ-field, Bk ⊂ T holds. Since
T ⊂ Bk from the definition of T , T = Bk.
Also, checking the sigma-finiteness of µ and λk is critical in the proof. Suppose
we have µ0 on (Rk,Bk) as µ0(A) = ∞ for all A ∈ Bk, and we have constructed
Π0 = {

∏k
i=1(−∞, ai] ∈ Bk : ai ∈ R}. Then Π0 is a π-system and µ0 = λk on Π0,

but µ0 and λk do not agree on σ(Π0) = Bk.
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10. Use Kolmogorov’s extension theorem to demonstrate the existence of a probability
distribution over infinite sequences of fair coin tosses. In fact, in this case we can
construct such measure explicitly and without relying on Kolmogorov’s theorem. Let
Ω be the unit interval (0, 1) equipped with the σ-field of Borel subsets and the Lebesgue
measure P. Let Yn(ω) = 1 if [2nω] (the integral part of 2nω) is odd and 0 otherwise.
Show that Y1,Y2,... are independent with P (Yk = 0) = P (Yk = 1) = 1/2 for all k. For
any ω ∈ Ω, the binary sequence {Yn(ω), n = 1, 2, . . .} is the corresponding sample path
of the process.

Points: 10 pts.

Solution.

Note first that if a random variable Yn takes either 0 or 1 as its value, σ(Yn) =
{Y −1

n (I) : I ⊂ {0, 1}}. Hence showing independence of Y1, Y2, . . . is equivalent to
showing that for any Ini ⊂ {0, 1},

P

(
k⋂
i=1

Y −1
ni

(Ini)

)
=

k∏
i=1

P (Y −1
ni

(Ini)).

First, we use Kolmogorov’s extension theorem to demonstrate the existence of a
probability distribution over infinite sequences of fair coin tosses. Consider RN.
For each n ∈ N, consider a measurable space (R,B). Then, for all v ⊂ N with
|v| < ∞, let (Rv,Bv) be the corresponding product space and product σ-field.
Let P v be a probability measure on (Rv,Bv) defined as for all B ∈ Bv,

P v(B) =
|B ∩ {0, 1}v|

2|v|
.

Then P v is a normalized counting measure with P v(Rv) = 1, and hence Pv is a
probability measure. Also, for any u ⊂ v ⊂ N and for all B ∈ Bu,

πu(P
v)(B) = P v({x ∈ Rv : xu ∈ B})

=
|{x ∈ Rv : xu ∈ B} ∩ {0, 1}v|

2|v|

=
|{x ∈ Rv : xu ∈ B ∩ {0, 1}u, xu\v ∈ {0, 1}u\v}|

2|v|

=
|{x ∈ Rv : xu ∈ B} ∩ {0, 1}u| × |{0, 1}||u\v|

2|u| × 2|u\v|

= P u(B).

Hence {P v : v ⊂ N, |v| < ∞} is a consistent set of probability measures. Hence
from Kolmogorov’s extension theorem, there exists a unique probability measure
P on (RN, ⊗n∈NB) such that πv(P ) = P v for all finite v ⊂ N. Now, define random
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variables {Xn}n∈N on RN as Xn(ω) = ωn. Then for any In1 , . . . , Ink ⊂ {0, 1}, let
v0 := {n1, . . . , nk}, then

P

(
k⋂
i=1

X−1
ni

(Ini)

)
= P

({
x ∈ RN : xni ∈ Ini

})
= P

({
x ∈ RN : xv0 ∈

k∏
i=1

Ini

})

= πv0(P )

(
k∏
i=1

Ini

)
= P v0

(
k∏
i=1

Ini

)

=

∣∣∣∏k
i=1 Ini ∩ {0, 1}v0

∣∣∣
2|v0|

=

∏k
i=1 |Ini |

2k
.

And hence

k∏
i=1

P
(
X−1
ni

(Ini)
)

=
k∏
i=1

|Ini |
2

=

∏k
i=1 |Ini |

2k
= P

(
k⋂
i=1

X−1
ni

(Ini)

)
.

Therefore, such {Xn : n ∈ N} is independent.

Second, we show that {Yn}n∈N, constructed as Yn(ω) = 1 if [2nω] odd and Yn(ω) =
0 if [2nω] even, is a sequence of independent variables. Let N := max{n1, . . . , nk}
and consider the map Y1:N : Ω→ {0, 1}N as Y1:N = (Y1, . . . , YN). For 1 ≤ n ≤ N ,
define πn : {0, 1}N → {0, 1} be the nth coordinate map as πn(y1, . . . , yN) = yn.
Then Yn = πn ◦ Y1:N and hence Y −1

n (I) = Y −1
1:N(π−1

n (I)). Now, define the induced

measure Q on ({0, 1}N , 2{0,1}N ) as Q(J) = P (Y −1
1:N(J)) for all J ⊂ {0, 1}N . Then

for any In1 , . . . , Ink ⊂ {0, 1},

P

(
k⋂
i=1

Y −1
ni

(Ini)

)
= P

(
k⋂
i=1

Y −1
1:N(π−1

ni
(Ini))

)
= P

(
Y −1

1:N

(
k⋂
i=1

π−1
ni

(Ini)

))

= Q

(
k⋂
i=1

π−1
ni

(Ini)

)
,

hence showing the independence of P is equivalent to showing that

Q

(
k⋂
i=1

π−1
ni

(Ini)

)
=

k∏
i=1

Q
(
π−1
ni

(Ini)
)
.

Let ϕ : {0, 1}N → {0, . . . , 2N − 1} as ϕ(y) =
∑N

n=1 yn2N−n. Then for all ω ∈
[ϕ(y)

2N
, ϕ(y)+1

2N
) ∩ (0, 1), Yn(ω) = yn holds for all 1 ≤ n ≤ N , and hence Y1:N(ω) = y.

Since ϕ is one-to-one and onto, Y −1
1:N({y}) = [ϕ(y)

2N
, ϕ(y)+1

2N
) ∩ (0, 1), and hence

Q({y}) = P

(
[
ϕ(y)

2N
,
ϕ(y) + 1

2N
) ∩ (0, 1)

)
=

1

2N
,
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i.e. Q is a uniform measure and Q(J) = |J |
2N

. Then from
⋂k
i=1 π

−1
ni

(Ini) ={
y ∈ {0, 1}N : yni ∈ Ini

}
,
∣∣∣⋂k

i=1 π
−1
ni

(Ini)
∣∣∣ = 2N−k

∏k
i=1 |Ini |, and hence

Q

(
k⋂
i=1

π−1
ni

(Ini)

)
=

2N−k
∏k

i=1 |Ini|
2N

= 2−k
k∏
i=1

|Ini |,

k∏
i=1

Q
(
π−1
ni

(Ini)
)

=
k∏
i=1

2N−1|Ini |
2N

= 2−k
k∏
i=1

|Ini |,

and hence Q
(⋂k

i=1 π
−1
ni

(Ini)
)

=
∏k

i=1 Q
(
π−1
ni

(Ini)
)
. Therefore, such {Yn : n ∈ N}

is independent.
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