36-752, Spring 2018 Homework 2 Solution

Due Thu March 1, by 5:00pm in Jisu's mailbox.

Points: 100 pts total for the assignment.

1. Let P and Q two probability measures on some measurable space (Ω, \mathcal{F}) and let μ be any σ -finite measure on that space such that both P and Q are absolutely continuous with respect to μ (for example, you may take $\mu = P + Q$). Let $p = \frac{dP}{d\mu}$ and $q = \frac{dQ}{d\mu}$ be the corresponding Radon-Nykodim derivatives.

The total variation distance between P and Q is defined as

$$d_{\mathrm{TV}}(P,Q) = \sup_{A \in \mathcal{F}} |P(A) - Q(A)|.$$

This is a very strong notion of distance between probability distributions: if $d_{\text{TV}}(P,Q) < \epsilon$, for some small $\epsilon > 0$, then *any* probabilistic statement involving P will differ by at most ϵ from the corresponding statement involving Q.

- (a) Show that d_{TV} is a metric over the set of all probability measure on (Ω, \mathcal{F}) . In particular, $d_{\text{TV}}(P, Q) = 0$ if and only if P = Q.
- (b) Show that $d_{\text{TV}}(P,Q) = 1$ if and only if P and Q are mutually singular.
- (c) Prove that the following equivalent representation of the total variation distance:

$$d_{\mathrm{TV}}(P,Q) = \frac{1}{2} \int_{\Omega} |p-q| d\mu.$$

Thus, the total variation distance is half the L_1 distance between densities. Hint: in the definition of total variation distance you may want to take $A = \{q \ge p\}$. Show that the supremum is achieved by this set...

(d) Total variation distance and hypothesis testing. Let X be a random variable taking values in some measurable space (S, \mathcal{A}) . Suppose we are interested in testing the null hypothesis that the distribution of X (a probability measure on (S, \mathcal{A}) !) is P versus the alternative hypothesis that it is Q. We do so by devising a *test* ϕ , which is a measurable function from S into $\{0, 1\}$ such that $\phi(x) = 1$ (resp. $\phi(x) = 0$) signifies that the null hypothesis is rejected (resp. not rejected) if X takes on the value x. To measure the performance of a given test function ϕ we evaluate its risk, defined as the sum of type I and type II errors:

$$R_{P,Q}(\phi) = \int_{S} \phi dP + \int_{S} (1-\phi) dQ.$$

Show that

$$\inf_{\phi} R_{P,Q}(\phi) = 1 - d_{\mathrm{TV}}(P,Q),$$

where the infimum si over all test functions.

The above result formalizes the intuition that the closer P and Q are, the harder it is to tell them apart using any test function. In particular, $R_{P,Q}(\phi) = 0$ – i.e., it is possible to perfectly discriminate between P and Q – if and only if the two probability measures are mutually singular.

Hint: use the Neymann-Pearson approach and take ϕ *to be the indicator function of the set* $\{q \ge p\}$ *.*

Points: 10 pts = 2 + 3 + 3 + 2.

Solution.

Let $A_0 := \{ \omega \in \Omega : q(\omega) \ge p(\omega) \}$. We first show that

$$d_{TV}(P,Q) = Q(A_0) - P(A_0) = P(A_0^{\complement}) - Q(A_0^{\complement}).$$

Note that $q - p \ge 0$ on A_0 and q - p < 0 on A_0^{\complement} . Hence for any $A \in \mathcal{F}$,

$$Q(A) - P(A) = \int_{A} (q - p) d\mu$$

=
$$\int_{A \cap A_0} (q - p) d\mu + \int_{A \cap A_0^{\complement}} (q - p) d\mu$$

$$\leq \int_{A \cap A_0} (q - p) d\mu$$

$$\leq \int_{A_0} (q - p) d\mu$$

=
$$Q(A_0) - P(A_0).$$

Similarly,

$$\begin{split} P(A) - Q(A) &= \int_{A} (p-q) d\mu \\ &= \int_{A \cap A_0} (p-q) d\mu + \int_{A \cap A_0^{\complement}} (p-q) d\mu \\ &\leq \int_{A \cap A_0^{\complement}} (p-q) d\mu \\ &\leq \int_{A_0^{\complement}} (p-q) d\mu \\ &= P(A_0^{\complement}) - Q(A_0^{\complement}). \end{split}$$

And $P(A_0) + P(A_0^{\complement}) = Q(A_0) + Q(A_0^{\complement}) = 1$ gives $Q(A_0) - P(A_0) = P(A_0^{\complement}) - Q(A_0^{\complement})$. And hence for all $A \in \mathcal{F}$,

$$|P(A) - Q(A)| \le Q(A_0) - P(A_0) = P(A_0^{\complement}) - Q(A_0^{\complement}).$$

Hence taking sup over $A \in \mathcal{F}$ gives

$$d_{TV}(P,Q) = \sup_{A \in \mathcal{F}} |P(A) - Q(A)| \le Q(A_0) - P(A_0) = P(A_0^{\complement}) - Q(A_0^{\complement}).$$

And since $A_0 \in \mathcal{F}$, $Q(A_0) - P(A_0) = P(A_0^{\complement}) - Q(A_0^{\complement}) \leq d_{TV}(P,Q)$ is trivial, and hence

$$d_{TV}(P,Q) = Q(A_0) - P(A_0) = P(A_0^{\mathsf{L}}) - Q(A_0^{\mathsf{L}}).$$

(a)

Let P, Q, R be probability measures on (Ω, \mathcal{F}) . First, $d_{TV}(P, Q) = \sup_{A \in \mathcal{F}} |P(A) - Q(A)| \ge 0$. Second,

$$d_{TV}(P,Q) = 0 \iff \sup_{A \in \mathcal{F}} |P(A) - Q(A)| = 0$$
$$\iff \text{ for all } A \in \mathcal{F}, \ P(A) = Q(A)$$
$$\iff P = Q.$$

Third, $d_{TV}(P,Q) = \sup_{A \in \mathcal{F}} |P(A) - Q(A)| = \sup_{A \in \mathcal{F}} |Q(A) - P(A)| = d_{TV}(Q,P)$. Forth,

$$d_{TV}(P,R) = \sup_{A \in \mathcal{F}} |P(A) - R(A)|$$

$$\leq \sup_{A \in \mathcal{F}} (|P(A) - Q(A)| + |Q(A) - R(A)|)$$

$$\leq \sup_{A \in \mathcal{F}} |P(A) - Q(A)| + \sup_{A \in \mathcal{F}} |Q(A) - R(A)|$$

$$= d_{TV}(P,Q) + d_{TV}(Q,R).$$

Hence d_{TV} is a metric over the set of all probability measure on (Ω, \mathcal{F}) . (b)

Let $A_0 = \{\omega \in \Omega : q(\omega) \ge p(\omega)\}$ be from above. When $d_{TV}(P,Q) = 1$, then

 $d_{TV}(P,Q) = Q(A_0) - P(A_0) = P(A_0^{\complement}) - Q(A_0^{\complement}) = 1.$

Then

$$P(A_0) = Q(A_0) - 1 \le 0,$$

$$Q(A_0^{\complement}) = P(A_0^{\complement}) - 1 \le 0,$$

and hence $P(A_0) = Q(A_0^{\complement}) = 0$. Since $A_0 \cap A_0^{\complement} = \emptyset$, P and Q are mutually singular. When P and Q are mutually singular, there exists $B \in \mathcal{F}$ with P(B) = 0 and $Q(B^{\complement}) = 0$. Then $P(B^{\complement}) = Q(B) = 1$, and hence

$$Q(B) - P(B) = P(B^{c}) - Q(B^{c}) = 1.$$

Then

$$d_{TV}(P,Q) = \sup_{A \in \mathcal{F}} |P(A) - Q(A)| \ge |P(B) - Q(B)| = 1.$$

And since $d_{TV}(P,Q) = \sup_{A \in \mathcal{F}} |P(A) - Q(A)| \le 1$,

$$d_{TV}(P,Q) = \sup_{A \in \mathcal{F}} |P(A) - Q(A)| = 1.$$

(c)

Let $A_0 = \{\omega \in \Omega : q(\omega) \ge p(\omega)\}$ be from above. Then

$$d_{TV}(P,Q) = Q(A_0) - P(A_0) = \int_{\{q \ge p\}} (q-p)d\mu$$
$$= \int_{\{q \ge p\}} |p-q|d\mu,$$

where last line is from that q - p = |p - q| on $\{q \ge p\}$. And similarly,

$$\begin{split} d_{TV}(P,Q) &= P(A_0^{\complement}) - Q(A_0^{\complement}) = \int_{\{p > q\}} (p-q) d\mu \\ &= \int_{\{p > q\}} |p-q| d\mu, \end{split}$$

where last line is from that p - q = |p - q| on $\{p > q\}$. And hence

$$d_{TV}(P,Q) = \frac{1}{2} \int_{\{q \ge p\}} |p - q| d\mu + \frac{1}{2} \int_{\{p > q\}} |p - q| d\mu$$
$$= \frac{1}{2} \int_{\Omega} |p - q| d\mu.$$

Also, note that

$$d_{TV}(P,Q) = \int_{\{q \ge p\}} (q-p)d\mu = \int_{\{q \ge p\}} (q-\min\{p,q\})d\mu + \int_{\{p>q\}} (q-\min\{p,q\})d\mu = \int_{\Omega} qd\mu - \int_{\Omega} \min\{p,q\}d\mu = 1 - \int_{\Omega} \min\{p,q\}d\mu.$$

And hence

$$d_{\rm TV}(P,Q) = \frac{1}{2} \int_{\Omega} |p-q| d\mu$$

(d) Since $\phi: S \to \{0, 1\}, \phi(\omega) = \mathbb{1}_{\{\omega: \phi(\omega)=1\}}(\omega)$. And hence

$$R_{P,Q}(\phi) = \int_{S} \phi dP + \int_{S} (1-\phi) dQ$$

= $1 - \left(\int_{S} \phi dQ - \int_{S} \phi dP \right)$
= $1 - \left(\int_{S} 1_{\{\phi=1\}} dQ - \int_{S} 1_{\{\phi=1\}} dP \right)$
= $1 - (Q(\{\phi=1\}) - P(\{\phi=1\}))$
 $\geq 1 - d_{TV}(P,Q),$

and the inequality holds if and only if $Q(\{\phi = 1\}) - P(\{\phi = 1\}) = d_{TV}(P,Q)$. Also, when $\phi(\omega) = 1_{\{\omega:q(\omega) \ge p(\omega\}}(\omega)$, then $\{\phi = 1\} = \{q \ge p\}$ implies $Q(\{\phi = 1\}) - P(\{\phi = 1\}) = d_{TV}(P,Q)$, and hence $R_{P,Q}(\phi) = 1 - d_{TV}(P,Q)$ holds. And hence

$$\inf_{\phi} R_{P,Q}(\phi) = 1 - d_{TV}(P,Q).$$

2. Another way of quantifying how close two probability measures on some measurable space (Ω, \mathcal{F}) are is to compute their Kullback-Liebler (KL) divergence, defined as

$$K(P,Q) = \begin{cases} \int \log \frac{dP}{dQ} dP & \text{if } P << Q\\ \infty & \text{otherwise.} \end{cases}$$

If P and Q are both absolutely continuous with respect to a σ -finite measure μ , then, assuming $P \ll Q$, $K(P,Q) = \int \log\left(\frac{p(\omega)}{q(\omega)}\right) p(\omega) d\mu(\omega)$ where p and q are the μ -densities of P and Q, respectively. In general K(P,Q) is not a metric over the space of probability measures on (Ω, \mathcal{F}) : K is not symmetric!

- (a) Use Jensen inequality to show that $K(P,Q) \ge 0$ with equality if and only if P = Q.
- (b) Take (Ω, \mathcal{F}) to be $(\mathbb{R}^k, \mathcal{B}^k)$ and let $\mathcal{P} = \{P_\theta, \theta \in \mathbb{R}^k\}$ where P_θ is the multivariate *k*-dimensional normal distribution with covariance matrix Σ and mean θ (thus, Σ is the common covariance matrix of all the P_θ 's). Compute $K(P_{\theta_1}, P_{\theta_2})$ for all P_{θ_1} and P_{θ_2} in \mathcal{P} . Conclude that, over \mathcal{P} , K behaves like a metric (which one?).
- (c) Take (Ω, \mathcal{F}) to be $(\mathbb{R}, \mathcal{B})$ and, for any $\theta > 0$, let P_{θ} be the distribution Uniform $(0, \theta)$. Compute $K(P_{\theta_1}, P_{\theta_2})$ for all $\theta_1, \theta_2 \in (0, \infty)$.

Points: 10 pts = 5 + 2 + 3.

Solution.

(a)

First, when P is not absolutely continuous with respect to Q, then $P \neq Q$ and $K(P,Q) = \infty > 0$ holds.

Second, when $P \ll Q$, let $\Omega_0 := \left\{ \omega : \frac{dP}{dQ}(\omega) > 0 \right\}$. Then on Ω_0 , $P \ll Q$ and $Q \ll P$ as well, and $\frac{dQ}{dP} = \left(\frac{dP}{dQ}\right)^{-1}$ on Ω_0 . And also

$$P(\Omega \backslash \Omega_0) = \int_{\Omega \backslash \Omega_0} dP = \int_{\Omega \backslash \Omega_0} \frac{dP}{dQ} dQ = 0,$$

and hence $P(\Omega_0) = P(\Omega) = 1$. Hence applying Jensen inequality on a convex function $\varphi(x) = -\log x$ gives

$$\int_{\Omega} \log \frac{dP}{dQ} dP = \int_{\Omega_0} -\log\left(\frac{dQ}{dP}\right) dP$$
$$\geq -\log\left(\int_{\Omega_0} \frac{dQ}{dP} dP\right)$$
$$= -\log\left(\int_{\Omega_0} dQ\right)$$
$$\geq -\log\left(\int_{\Omega} dQ\right) = 0.$$

Now, the second equality holds if and only if $\int_{\Omega \setminus \Omega_0} dQ = 0$, i.e. $Q(\Omega \setminus \Omega_0) = 0$ and $Q(\Omega_0) = 1$. Also, since $\varphi(x) = -\log x$ is strictly convex, the first equality holds if and only if $\frac{dQ}{dP}$ is a point mass under P on Ω_0 , i.e. if and only if there exists $a \in \mathbb{R}$ such that $\frac{dQ}{dP} = a$ a.e. under P on Ω_0 . Then if two equality holds, then

$$\int_{\Omega_0} \frac{dQ}{dP} dP \begin{cases} = \int_{\Omega_0} adP = aP(\Omega_0) = a, \\ = \int_{\Omega_0} dQ = Q(\Omega_0) = 1, \end{cases}$$

and hence a = 1. Then for all $A \in \Omega$,

$$P(A) = \int_{A} dP = \int_{A \cap \Omega_{0}} dP$$
$$= \int_{A \cap \Omega_{0}} \frac{dP}{dQ} dQ = \int_{A \cap \Omega_{0}} dQ$$
$$= Q(A \cap \Omega_{0}) = Q(A),$$

and hence P = Q. And when P = Q, then $\frac{dP}{dQ} = 1$ a.e. [P], and hence K(P,Q) = 0. Hence $K(P,Q) \ge 0$ holds with equality if and only if P = Q. (b)

Let $p_{\theta}(x) = \frac{1}{\sqrt{2\pi|\Sigma|}} \exp\left(-\frac{1}{2}(x-\theta)^{\top}\Sigma^{-1}(x-\theta)\right)$ be the pdf of P_{θ} on \mathbb{R}^{k} . Then

$$\begin{aligned} \frac{dP_{\theta_1}}{dP_{\theta_2}}(x) &= \frac{p_{\theta_1}(x)}{p_{\theta_2}(x)} \\ &= \exp\left(-\frac{1}{2}(x-\theta_1)^\top \Sigma^{-1}(x-\theta_1) + \frac{1}{2}(x-\theta_2)^\top \Sigma^{-1}(x-\theta_2)\right) \\ &= \exp\left((\theta_1 - \theta_2)^\top \Sigma^{-1}\left(x - \frac{\theta_1 + \theta_2}{2}\right)\right). \end{aligned}$$

Let $X \sim P_{\theta_1}$, then $\mathbb{E}_{P_{\theta_1}}[X] = \theta_1$, and hence

$$KL(P_{\theta_1}, P_{\theta_2}) = \mathbb{E}_{P_{\theta_1}} \left[\log \left(\frac{dP_{\theta_1}}{dP_{\theta_2}}(X) \right) \right]$$
$$= \mathbb{E}_{P_{\theta_1}} \left[(\theta_1 - \theta_2)^\top \Sigma^{-1} \left(X - \frac{\theta_1 + \theta_2}{2} \right) \right]$$
$$= \frac{1}{2} (\theta_1 - \theta_2)^\top \Sigma^{-1} (\theta_1 - \theta_2).$$

Hence $KL(P_{\theta_1}, P_{\theta_2}) = KL(P_{\theta_2}, P_{\theta_1})$, i.e. KL is symmetric. In fact, $\sqrt{2KL(\cdot, \cdot)}$ is a Mahalanobis distance.

(c)

When $\theta_1 > \theta_2$, then $P_{\theta_1}((\theta_2, \theta_1)) > 0$ but $P_{\theta_2}((\theta_2, \theta_1)) = 0$, so P_{θ_1} is not absolutely continuous with respect to θ_2 , and hence $KL(P_{\theta_1}, P_{\theta_2}) = \infty$. When $\theta_1 \leq \theta_2$, let $p_{\theta}(x) = \frac{1}{\theta} I_{(0,\theta)}(x)$ be the pdf of P_{θ} on \mathbb{R} . Then

$$\frac{dP_{\theta_1}}{dP_{\theta_2}}(x) = \frac{p_{\theta_1}(x)}{p_{\theta_2}(x)} = \frac{\frac{1}{\theta_1}I_{(0,\theta_1)}(x)}{\frac{1}{\theta_2}I_{(0,\theta_2)}(x)}$$
$$= \frac{\theta_2}{\theta_1}I_{(0,\theta_1)}(x).$$

And hence $KL(P_{\theta_1}, P_{\theta_2})$ can be computed as

$$KL(P_{\theta_1}, P_{\theta_2}) = \int \log\left(\frac{dP_{\theta_1}}{dP_{\theta_2}}\right) dP_{\theta_1}$$
$$= \int_0^{\theta_1} \log\left(\frac{\theta_2}{\theta_1}\right) \frac{1}{\theta_1} dx$$
$$= \log\left(\frac{\theta_2}{\theta_1}\right).$$

And hence

$$KL(P_{\theta_1}, P_{\theta_2}) = \begin{cases} \log\left(\frac{\theta_2}{\theta_1}\right) & \text{if } \theta_1 \le \theta_2, \\ \infty & \text{if } \theta_1 > \theta_2. \end{cases}$$

Remark.

In (a), note that $\int \left(\frac{dP}{dQ}\right)^{-1} dP$ need not equal to 1 unless $P \ll Q$ and $Q \ll P$. For example, suppose P and Q has densities $p(\omega) = I_{(0,1)}(\omega)$ and $q(\omega) = \frac{1}{2}I_{(0,2)}(\omega)$ with respect to a Lebesgue measure μ . Then $\frac{dP}{dQ}(\omega) = 2I_{(0,1)}(\omega)$ a.e. with respect to μ . But $\int \left(\frac{dP}{dQ}\right)^{-1} dP = \int \frac{1}{2}I_{(0,1)}d\mu = \frac{1}{2} \neq 1$, while $\int dQ = 1$.

3. Riemann versus Lebesgue Integral. Let $f(x) = \frac{(-1)^n}{n}$ if $n-1 \le x < n$ for $n = 1, 2, \ldots$. We saw in class that $\int_0^\infty f(x) dx$ exists as an improper Riemann integral since

$$\lim_{b \to \infty} \int_0^b f(x) = -\log 2.$$

Show however that f is not Lebesgue integrable over $[0, \infty)$. *Hint: it is enough to show that* $\int_0^\infty |f| = \infty$.

In contrast, show that the function $f: [0,1] \to \{0,1\}$ such that f(x) = 1 if x is rational and 0 otherwise is such that $\int_0^1 f(x) d\lambda(x) = 0$ but it is not Riemann integrable. *Hint:* you will need the result in the next exercise.

Points: 10 pts.

Solution.

Let $f(x) = \frac{(-1)^n}{n}$ if $n-1 \le x < n$ for $n = 1, 2, \dots$ Note that for all $x \ge 0$, $n-1 \le x$ implies $|f(x)| = \frac{1}{n} \le \frac{1}{x+1}$, and hence

$$\int_{0}^{\infty} |f(x)| dx \le \int_{0}^{\infty} \frac{1}{x+1} dx = [\log(x+1)]_{0}^{\infty} = \infty$$

And hence f is (improper) Riemann integrable but not Lebesgue integrable over $[0, \infty)$.

Now, let $f \colon [0,1] \to \{0,1\}$ such that f(x) = 1 if x is rational and 0 otherwise. Then

$$\begin{split} \int_0^1 f(x) d\lambda(x) &= \int_0^1 I_{\mathbb{Q} \cap [0,1]}(x) d\lambda(x) \\ &= \lambda(\mathbb{Q} \cap [0,1]) \\ &= \sum_{x \in \mathbb{Q} \cap [0,1]} \lambda(\{x\}) \\ &= \sum_{x \in \mathbb{Q} \cap [0,1]} 0 = 0. \end{split}$$

To see whether f is Riemann integrable, let $0 = t_0 < \cdots < t_m = 1$ be a partition. Then since $[t_{i-1}, t_i]$ contains both rational and irrational numbers,

$$\sum_{i=1}^{m} \inf_{t \in [t_{i-1}, t_i]} f(t)(t_i - t_{i-1}) = \sum_{i=1}^{m} 0 \times (t_i - t_{i-1}) = 0,$$

$$\sum_{i=1}^{m} \sup_{t \in [t_{i-1}, t_i]} f(t)(t_i - t_{i-1}) = \sum_{i=1}^{m} 1 \times (t_i - t_{i-1}) = \sum_{i=1}^{m} (t_i - t_{i-1}) = 1$$

Hence upper Riemann sum is always 1 and lower Riemann sum is always 0. Hence they don't converge as partition becomes finer, and hence f is not Riemann integrable.

4. Show that the Lebesgue measure and any counting measure over a countable subset of \mathbb{R}^k (for example, the set of rationals) are mutually singular.

Points: 10 pts.

Solution.

Let $A_0 = \{x_n : n \in \mathbb{N}\} \subset \mathbb{R}^k$ be a countable subset of \mathbb{R}^k . Let λ be the Lebesgue measure and μ_{A_0} be the counting measure over A_0 defined as $\mu_{A_0}(A) = |A \cap A_0|$. Then since $\lambda(\{x_n\}) = 0$ for all $n \in \mathbb{N}$,

$$\lambda(A_0) = \sum_{n=1}^{\infty} \lambda(\{x_n\}) = 0.$$

And $\mu_{A_0}(A_0^{\complement}) = |A_0 \cap A_0^{\complement}| = 0$, and hence λ and μ_{A_0} are mutually singular.

5. Let f be an integrable real-valued function over a measure space (Ω, \mathcal{F}, P) . Show that f is finite almost everywhere $[\mu]$. *Hint: you may assume that* $f \ge 0$ *then you only need to show that* $f < \infty$ *almost everywhere* $[\mu]$.

Points: 10 pts.

Solution.

Let $A_n = f^{-1}(\overline{\mathbb{R}} \setminus (-n, n)) = \{ \omega \in \Omega : |f(\omega)| \ge n \}$. Then $|f| \ge n$ on A_n , and hence

$$n\mu(A_n) = \int_{A_n} nd\mu \le \int_{A_n} |f|d\mu \le \int_{\Omega} |f|d\mu,$$

and hence

$$\mu(A_n) \le \frac{1}{n} \int_{\Omega} |f| d\mu.$$

Now, $A_n \downarrow A_\infty = \{ \omega \in \Omega : |f(\omega)| = \infty \}$, then from the continuity of measure,

$$\mu(A_{\infty}) = \mu(\lim_{n} A_{n}) = \lim_{n} \mu(A_{n})$$
$$\leq \lim_{n} \frac{1}{n} \int_{\Omega} |f| d\mu = 0.$$

And hence $\mu(A_{\infty}) = 0$, and f is finite almost everywhere $[\mu]$.

6. Assume that f and g are simple functions on some measure space $(\Omega, \mathcal{F}, \mu)$. Prove that, for all $a, b \in \mathbb{R}$,

$$\int (af + bg)d\mu = a \int f d\mu + b \int g d\mu.$$

Points: 10 pts.

Solution.

Note first that if $f = \sum_{i=1}^{m} a_i I_{A_i}$ with A_i being disjoint (while a_i 's are not necessarily disjoint), then $\int f d\mu = \sum_{i=1}^{m} a_i \mu(A_i)$. This is since once we rewrite f as $f = \sum_{i=1}^{n} b_i \sum_{j=1}^{i_k} I_{B_{i,j}} = \sum_{i=1}^{n} b_i I_{\bigcup_{j=1}^{i_k} B_{i,j}}$ with b_i 's being distinct and $\{(b_i, B_{i,j})\} = \{(a_i, A_i)\}$, then

$$\int f d\mu = \sum_{i=1}^{n} b_{i} \mu(\bigcup_{j=1}^{i_{k}} B_{i,j}) = \sum_{i=1}^{n} b_{i} \sum_{j=1}^{i_{k}} \mu(B_{i,j})$$
$$= \sum_{i=1}^{n} \sum_{j=1}^{i_{k}} b_{i} \mu(B_{i,j}) = \sum_{i=1}^{m} a_{i} \mu(A_{i}).$$

Now, since f and g are simple functions, $f = \sum_{i=1}^{m} a_i I_{A_i}$ and $g = \sum_{j=1}^{n} b_j I_{B_j}$ for some $a_i, b_j \neq 0$ and $A_i, B_j \in \mathcal{F}$. We let $A_0 = \bigcup_{j=1}^{n} B_j - \bigcup_{i=1}^{m} A_i, B_0 = \bigcup_{i=1}^{m} A_i - \bigcup_{j=1}^{n} B_j$, and let $a_0 = b_0 = 0$. Then

$$af + bg = \sum_{i=0}^{m} \sum_{j=0}^{n} (aa_i + bb_j) \mathbf{1}_{A_i \cap B_j},$$

and $A_i \cap B_j$ are pairwise disjoint, and hence

$$\int (af + bg)d\mu = \sum_{i=0}^{m} \sum_{j=0}^{n} (aa_i + bb_j)\mu(A_i \cap B_j)$$

= $a \sum_{i=0}^{m} a_i \sum_{j=0}^{n} \mu(A_i \cap B_j) + b \sum_{j=0}^{n} b_j \sum_{i=0}^{m} \mu(A_i \cap B_j)$
= $a \sum_{i=0}^{m} a_i \mu(A_i) + b \sum_{j=0}^{n} b_j \mu(B_j)$
= $a \int f d\mu + b \int g d\mu$,

where the second-to-last step is from that $A_i = \bigcup_{j=0}^n (A_i \cap B_j)$ and $B_j = \bigcup_{i=0}^m (A_i \cap B_j)$ and $A_i \cap B_j$ being disjoint.

7. Let $\{f_n\}$ be a sequence of non-negative functions on some measure space $(\Omega, \mathcal{F}, \mu)$. Assume that $\int f_n d\mu \to 0$. Prove or disprove (with a counter-example): $f_n \to 0$ a.e. $[\mu]$.

Points: 10 pts.

Solution.

 f_n need not converges to 0 a.e. $[\mu]$. In fact, it is possible that $f_n(\omega) \not\rightarrow 0$ for all $\omega \in \Omega$.

Let $\Omega = [0, 1)$, $\mathcal{F} =$ Borel sets of Ω , and μ be the Lebesgue measure. For $n \in \mathbb{N}$, let $m := \lfloor \log_2 n \rfloor$ so that $2^m \leq n < 2^{m+1}$, and define $f_n : [0, 1) \to [0, \infty)$ be

$$f_n(\omega) := I\left(\omega \in \left[\frac{n-2^m}{2^m}, \frac{n-2^m+1}{2^m}\right]\right).$$

Then $\int f_n d\mu = \frac{1}{2^{\lfloor \log_2 n \rfloor}} \leq \frac{2}{n} \to 0$ as $n \to \infty$. However, fix $\omega \in [0, 1)$, then for all $m \in \mathbb{N}$, there exists $0 \leq k < 2^m$ with $\frac{k}{2^m} \leq \omega < \frac{k+1}{2^m}$. Then

$$f_{2^m+k}(\omega) = I\left(\omega \in \left[\frac{k}{2^m}, \frac{k+1}{2^m}\right]\right) = 1$$

Since such k exists for each $m \in \mathbb{N}$, $f_n(\omega) = 1$ for infinitely many n, and hence $f_n(\omega) \not\rightarrow 0$ for all $\omega \in \Omega$.

8. Let $(\Omega_1, \mathcal{F}_1), \ldots, (\Omega_k, \mathcal{F}_k)$ be k measurable spaces. For $j = 1, \ldots, k$ let $\pi_j \colon \prod_{i=1}^k \Omega_i \to \Omega_j$ denote the coordinate projection mapping given by $\pi_i(\omega_1, \ldots, \omega_k) = \omega_j$. Show that the product σ -field $\bigotimes_{i=1}^k \mathcal{F}_i$ is the σ -field generated by all the coordinate projections.

Points: 10 pts.

Solution.

Let $\mathcal{F}_0 = \{A_1 \times \cdots \times A_k : A_i \in \mathcal{F}_i\}$, so that $\mathcal{F} = \sigma(\mathcal{F}_0)$. Let $\mathcal{G}_0 = \{\pi_i^{-1}(A_i) : A_i \in \mathcal{F}_i\}$ and let $\mathcal{G} := \sigma(\mathcal{G}_0)$. We would like to show $\mathcal{F} = \mathcal{G}$. $(\mathcal{G} \subset \mathcal{F})$: Since $\pi_i^{-1}(A_i) = \Omega_1 \times \cdots \times \Omega_{i-1} \times A_i \times \Omega_{i+1} \times \cdots \times \Omega_k$, $\mathcal{G}_0 \subset \mathcal{F}_0$, and hence $\mathcal{G}_0 \subset \sigma(\mathcal{F}_0) = \mathcal{F}$. Then since \mathcal{F} is a σ -field containing $\mathcal{G}_0, \sigma(\mathcal{G}_0) \subset \mathcal{F}$ as well, i.e. $\mathcal{G} \subset \mathcal{F}$ holds. $(\mathcal{F} \subset \mathcal{G})$: Note that for all $A_i \in \mathcal{F}_i$, $\prod_{i=1}^k A_i = \bigcap_{i=1}^k \pi_i^{-1}(A_i) \in \mathcal{G}$ since \mathcal{G} is a σ -field. Hence $\mathcal{F}_0 \subset \mathcal{G}$. Then since \mathcal{G} is a σ -field containing $\mathcal{F}_0, \sigma(\mathcal{F}_0) \subset \mathcal{G}$ as well, i.e. $\mathcal{F} \subset \mathcal{G}$ holds.

Hence $\mathcal{F} = \mathcal{G}$, i.e. $\bigotimes_{i=1}^{k} \mathcal{F}_i$ is the σ -field generated by all the coordinate projections.

- 9. Let λ_k denote the k-dimensional Lebesgue measure and H be a linear subspace in \mathbb{R}^k of dimension no larger than k-1. Show that $\lambda_k(H) = 0$. You may proceed as follows:
 - (a) show that the Lebesgue measure is translation invariant: for each Borel measurable set A and $x \in \mathbb{R}^k$, $\lambda_k(A) = \lambda_k(x+A)$, where $x + A = \{x + y, y \in A\}$. Hint: use the good set principle to show that the class of sets A such that $A + x \in \mathcal{B}^k$ for all $x \in \mathbb{R}^k$ coincides with \mathcal{B}^k and then show – using the uniqueness theorem for measures – that any measure μ such that, for any fixed x, $\mu(A) = \lambda_k(A + x)$ for all $A \in \mathcal{B}^k$ coincides with λ_k .
 - (b) Use the fact (which you do not need to prove!) that, for any σ -finite measure μ on (Ω, \mathcal{F}) , only countably many disjoint sets in \mathcal{F} can have positive measure to conclude that $\lambda_k(H) = 0$ for any subspace of dimension less than k. (In fact, the same conclusion holds for any affine subspace of dimension less than k, where an affine subspace is a set of the form $x + S = \{x + y, y \in S\}$ for a linear subspace S and a point $x \in \mathbb{R}^k$).

Points: 10 pts = 7 + 3.

Solution.

(a)

We show that for all $x \in \mathbb{R}^k$, $\lambda_k(x+A) = \lambda_k(A)$. Fix any $x \in \mathbb{R}^k$ and let $T_x : \mathbb{R}^k \to \mathbb{R}^k$ be a translation as $T_x(y) = y - x$, then $x + A = T_x^{-1}(A)$. Then since $T_x : \mathbb{R}^k \to \mathbb{R}^k$ is continuous and hence measurable, $A \in \mathcal{B}^k$ implies $x + A \in \mathcal{B}^k$. Now consider the induced measure μ on $(\mathbb{R}^k, \mathcal{B}^k)$ as $\mu(A) = \lambda_k(T_x^{-1}(A))$, i.e. $\mu(A) = \lambda_k(x+A)$. Let $\Pi = \{\prod_{i=1}^k (a_i, b_i] \in \mathcal{B}^k : a_i \leq b_i\}$. Then $\left(\prod_{i=1}^k (a_i, b_i]\right) \cap$ $\left(\prod_{i=1}^{k} (c_i, d_i]\right) = \prod_{i=1}^{k} (\max\{a_i, c_i\}, \min\{b_i, d_i\}] \in \Pi, \text{ so } \Pi \text{ is a } \pi\text{-system. Now,}$ note that $\lambda_k \left(\prod_{i=1}^{k} (a_i, b_i]\right) = \prod_{i=1}^{k} (b_i - a_i)$ and

$$\mu\left(\prod_{i=1}^{k} (a_i, b_i]\right) = \lambda_k\left(\prod_{i=1}^{k} (x_i + a_i, x_i + b_i]\right) = \prod_{i=1}^{k} ((x_i + b_i) - (x_i + a_i)) = \prod_{i=1}^{k} (b_i - a_i),$$

and hence $\lambda_k = \mu$ on Π . Also, note that $\left\{\prod_{i=1}^k (n_i, n_i + 1] : n_i \in \mathbb{Z}\right\}$ covers \mathbb{R}^k and $\mu\left(\prod_{i=1}^k (n_i, n_i + 1]\right) = \lambda_k\left(\prod_{i=1}^k (n_i, n_i + 1]\right) = 1$, and hence both μ and λ_k are σ -finite on Π . Then from uniqueness of the measure, μ and λ_k agree on $\sigma(\Pi) = \mathcal{B}^k$. i.e. $\mu(A) = \lambda_k(x + A) = \lambda_k(A)$ for all $x \in \mathbb{R}^k$ and $A \in \mathcal{B}^k$. (b)

We show that $\lambda_k(H) = 0$ for any subspace $H \neq \mathbb{R}^k$. Choose $x \in \mathbb{R}^k \setminus H$. Then for $t \in \mathbb{R}$,

$$y \in tx + H \iff y - tx \in H$$

Hence for $t_1 \neq t_2 \in \mathbb{R}$, $y \in (t_1x + H) \cap (t_2x + H)$ implies $y - t_1x$, $y - t_2x \in H$, and then

$$x = \frac{(y - t_1 x) - (y - t_2 x)}{t_2 - t_1} \in H,$$

which is a contradiction. Hence $(t_1x + H) \cap (t_2x + H) = \emptyset$ if $t_1 \neq t_2$. Then $\{tx + H : t \in \mathbb{R}\}$ are uncountably many disjoint sets.

Now, if $\lambda_k(H) > 0$, then from above, $\lambda_k(tx + H) > 0$ for all $t \in \mathbb{R}$. Then $\{tx + H : t \in \mathbb{R}\}$ are uncountably many disjoint sets with all positive measures, which is impossible. Hence $\lambda_k(H) = 0$.

Remark.

In (a), we showed the measurability of x + A by using the measurable function T_x defined as $T_x(y) = y - x$ and using that $x + A = T_x^{-1}(A)$. An alternative is to use good set principle as follows. Let $\mathcal{T} := \{A \in \mathcal{B}^k : \text{ for all } x \in \mathbb{R}^k, x + A \in \mathcal{B}^k\}$, and we show that $\mathcal{T} = \mathcal{B}^k$. We first check that \mathcal{T} is σ -algebra. First, $x + \mathbb{R}^k = \mathbb{R}^k \in \mathcal{B}^k$ for all $x \in \mathbb{R}^k$, and hence $\mathbb{R}^k \in \mathcal{T}$. Second, if $A \in \mathcal{T}$, then for all $x \in \mathbb{R}^k$, $x + A \in \mathcal{B}^k$, and \mathcal{B}^k being a σ -field implies $x + A^{\complement} = (x + A)^{\complement} \in \mathcal{B}^k$, and hence $A^{\complement} \in \mathcal{T}$. Third, suppose $\{A_n\}_{n=1}^{\infty} \subset \mathcal{T}$, then for all $x \in \mathbb{R}^k, x + A_n \in \mathcal{B}^k$ for all $n \in \mathbb{N}$. Then \mathcal{B}^k being a σ -field implies $x + \bigcup_n A_n = \bigcup_n (x + A_n) \in \mathcal{B}^k$, and hence $\bigcup_n A_n \in \mathcal{T}$. Hence \mathcal{T} is a σ -field. Also, let $\mathcal{O} = \{A \subset \mathbb{R}^k : A \text{ open}\}$, then Abeing open implies that for all $x \in \mathbb{R}^k, x + A$ is also open, and hence $x + A \in \mathcal{B}^k$ and hence $\mathcal{O} \subset \mathcal{T}$. Then since $\mathcal{B}^k = \sigma(\mathcal{O})$ and \mathcal{T} is a σ -field, $\mathcal{B}^k \subset \mathcal{T}$ holds. Since $\mathcal{T} \subset \mathcal{B}^k$ from the definition of $\mathcal{T}, \mathcal{T} = \mathcal{B}^k$.

Also, checking the *sigma*-finiteness of μ and λ_k is critical in the proof. Suppose we have μ_0 on $(\mathbb{R}^k, \mathcal{B}^k)$ as $\mu_0(A) = \infty$ for all $A \in \mathcal{B}^k$, and we have constructed $\Pi_0 = \{\prod_{i=1}^k (-\infty, a_i] \in \mathcal{B}^k : a_i \in \mathbb{R}\}$. Then Π_0 is a π -system and $\mu_0 = \lambda_k$ on Π_0 , but μ_0 and λ_k do not agree on $\sigma(\Pi_0) = \mathcal{B}^k$. 10. Use Kolmogorov's extension theorem to demonstrate the existence of a probability distribution over infinite sequences of fair coin tosses. In fact, in this case we can construct such measure explicitly and without relying on Kolmogorov's theorem. Let Ω be the unit interval (0, 1) equipped with the σ -field of Borel subsets and the Lebesgue measure P. Let $Y_n(\omega) = 1$ if $[2^n \omega]$ (the integral part of $2^n \omega$) is odd and 0 otherwise. Show that Y_1, Y_2, \ldots are independent with $P(Y_k = 0) = P(Y_k = 1) = 1/2$ for all k. For any $\omega \in \Omega$, the binary sequence $\{Y_n(\omega), n = 1, 2, \ldots\}$ is the corresponding sample path of the process.

Points: 10 pts.

Solution.

Note first that if a random variable Y_n takes either 0 or 1 as its value, $\sigma(Y_n) = \{Y_n^{-1}(I) : I \subset \{0,1\}\}$. Hence showing independence of Y_1, Y_2, \ldots is equivalent to showing that for any $I_{n_i} \subset \{0,1\}$,

$$P\left(\bigcap_{i=1}^{k} Y_{n_i}^{-1}(I_{n_i})\right) = \prod_{i=1}^{k} P(Y_{n_i}^{-1}(I_{n_i})).$$

First, we use Kolmogorov's extension theorem to demonstrate the existence of a probability distribution over infinite sequences of fair coin tosses. Consider $\mathbb{R}^{\mathbb{N}}$. For each $n \in \mathbb{N}$, consider a measurable space $(\mathbb{R}, \mathcal{B})$. Then, for all $v \subset \mathbb{N}$ with $|v| < \infty$, let $(\mathbb{R}^v, \mathcal{B}^v)$ be the corresponding product space and product σ -field. Let P^v be a probability measure on $(\mathbb{R}^v, \mathcal{B}^v)$ defined as for all $B \in \mathcal{B}^v$,

$$P^{v}(B) = \frac{|B \cap \{0, 1\}^{v}|}{2^{|v|}}.$$

Then P^v is a normalized counting measure with $P^v(\mathbb{R}^v) = 1$, and hence P_v is a probability measure. Also, for any $u \subset v \subset \mathbb{N}$ and for all $B \in \mathcal{B}^u$,

$$\pi_{u}(P^{v})(B) = P^{v}(\{x \in \mathbb{R}^{v} : x_{u} \in B\})$$

$$= \frac{|\{x \in \mathbb{R}^{v} : x_{u} \in B\} \cap \{0, 1\}^{v}|}{2^{|v|}}$$

$$= \frac{|\{x \in \mathbb{R}^{v} : x_{u} \in B \cap \{0, 1\}^{u}, x_{u \setminus v} \in \{0, 1\}^{u \setminus v}\}|}{2^{|v|}}$$

$$= \frac{|\{x \in \mathbb{R}^{v} : x_{u} \in B\} \cap \{0, 1\}^{u}| \times |\{0, 1\}|^{|u \setminus v|}}{2^{|u|} \times 2^{|u \setminus v|}}$$

$$= P^{u}(B).$$

Hence $\{P^v : v \in \mathbb{N}, |v| < \infty\}$ is a consistent set of probability measures. Hence from Kolmogorov's extension theorem, there exists a unique probability measure P on $(\mathbb{R}^{\mathbb{N}}, \otimes_{n \in \mathbb{N}} \mathcal{B})$ such that $\pi_v(P) = P^v$ for all finite $v \in \mathbb{N}$. Now, define random variables $\{X_n\}_{n\in\mathbb{N}}$ on \mathbb{R}^N as $X_n(\omega) = \omega_n$. Then for any $I_{n_1}, \ldots, I_{n_k} \subset \{0, 1\}$, let $v_0 := \{n_1, \ldots, n_k\}$, then

$$P\left(\bigcap_{i=1}^{k} X_{n_{i}}^{-1}(I_{n_{i}})\right) = P\left(\left\{x \in \mathbb{R}^{\mathbb{N}} : x_{n_{i}} \in I_{n_{i}}\right\}\right) = P\left(\left\{x \in \mathbb{R}^{\mathbb{N}} : x_{v_{0}} \in \prod_{i=1}^{k} I_{n_{i}}\right\}\right)$$
$$= \pi_{v_{0}}(P)\left(\prod_{i=1}^{k} I_{n_{i}}\right) = P^{v_{0}}\left(\prod_{i=1}^{k} I_{n_{i}}\right)$$
$$= \frac{\left|\prod_{i=1}^{k} I_{n_{i}} \cap \{0,1\}^{v_{0}}\right|}{2^{|v_{0}|}} = \frac{\prod_{i=1}^{k} |I_{n_{i}}|}{2^{k}}.$$

And hence

$$\prod_{i=1}^{k} P\left(X_{n_{i}}^{-1}(I_{n_{i}})\right) = \prod_{i=1}^{k} \frac{|I_{n_{i}}|}{2} = \frac{\prod_{i=1}^{k} |I_{n_{i}}|}{2^{k}} = P\left(\bigcap_{i=1}^{k} X_{n_{i}}^{-1}(I_{n_{i}})\right).$$

Therefore, such $\{X_n : n \in \mathbb{N}\}$ is independent.

Second, we show that $\{Y_n\}_{n\in\mathbb{N}}$, constructed as $Y_n(\omega) = 1$ if $[2^n\omega]$ odd and $Y_n(\omega) = 0$ if $[2^n\omega]$ even, is a sequence of independent variables. Let $N := \max\{n_1, \ldots, n_k\}$ and consider the map $Y_{1:N} : \Omega \to \{0,1\}^N$ as $Y_{1:N} = (Y_1, \ldots, Y_N)$. For $1 \le n \le N$, define $\pi_n : \{0,1\}^N \to \{0,1\}$ be the n^{th} coordinate map as $\pi_n(y_1, \ldots, y_N) = y_n$. Then $Y_n = \pi_n \circ Y_{1:N}$ and hence $Y_n^{-1}(I) = Y_{1:N}^{-1}(\pi_n^{-1}(I))$. Now, define the induced measure Q on $(\{0,1\}^N, 2^{\{0,1\}^N})$ as $Q(J) = P(Y_{1:N}^{-1}(J))$ for all $J \subset \{0,1\}^N$. Then for any $I_{n_1}, \ldots, I_{n_k} \subset \{0,1\}$,

$$P\left(\bigcap_{i=1}^{k} Y_{n_{i}}^{-1}(I_{n_{i}})\right) = P\left(\bigcap_{i=1}^{k} Y_{1:N}^{-1}(\pi_{n_{i}}^{-1}(I_{n_{i}}))\right) = P\left(Y_{1:N}^{-1}\left(\bigcap_{i=1}^{k} \pi_{n_{i}}^{-1}(I_{n_{i}})\right)\right)$$
$$= Q\left(\bigcap_{i=1}^{k} \pi_{n_{i}}^{-1}(I_{n_{i}})\right),$$

hence showing the independence of P is equivalent to showing that

$$Q\left(\bigcap_{i=1}^{k} \pi_{n_{i}}^{-1}(I_{n_{i}})\right) = \prod_{i=1}^{k} Q\left(\pi_{n_{i}}^{-1}(I_{n_{i}})\right)$$

Let $\varphi : \{0,1\}^N \to \{0,\ldots,2^N-1\}$ as $\varphi(y) = \sum_{n=1}^N y_n 2^{N-n}$. Then for all $\omega \in [\frac{\varphi(y)}{2^N}, \frac{\varphi(y)+1}{2^N}) \cap (0,1), Y_n(\omega) = y_n$ holds for all $1 \le n \le N$, and hence $Y_{1:N}(\omega) = y$. Since φ is one-to-one and onto, $Y_{1:N}^{-1}(\{y\}) = [\frac{\varphi(y)}{2^N}, \frac{\varphi(y)+1}{2^N}) \cap (0,1)$, and hence

$$Q(\{y\}) = P\left(\left[\frac{\varphi(y)}{2^N}, \frac{\varphi(y)+1}{2^N}\right) \cap (0,1)\right) = \frac{1}{2^N},$$

i.e. Q is a uniform measure and $Q(J) = \frac{|J|}{2^N}$. Then from $\bigcap_{i=1}^k \pi_{n_i}^{-1}(I_{n_i}) = \{y \in \{0,1\}^N : y_{n_i} \in I_{n_i}\}, \left|\bigcap_{i=1}^k \pi_{n_i}^{-1}(I_{n_i})\right| = 2^{N-k} \prod_{i=1}^k |I_{n_i}|$, and hence

$$Q\left(\bigcap_{i=1}^{k} \pi_{n_{i}}^{-1}(I_{n_{i}})\right) = \frac{2^{N-k} \prod_{i=1}^{k} |I_{n_{i}}|}{2^{N}} = 2^{-k} \prod_{i=1}^{k} |I_{n_{i}}|,$$
$$\prod_{i=1}^{k} Q\left(\pi_{n_{i}}^{-1}(I_{n_{i}})\right) = \prod_{i=1}^{k} \frac{2^{N-1}|I_{n_{i}}|}{2^{N}} = 2^{-k} \prod_{i=1}^{k} |I_{n_{i}}|,$$

and hence $Q\left(\bigcap_{i=1}^{k} \pi_{n_i}^{-1}(I_{n_i})\right) = \prod_{i=1}^{k} Q\left(\pi_{n_i}^{-1}(I_{n_i})\right)$. Therefore, such $\{Y_n : n \in \mathbb{N}\}$ is independent.