36-752, Spring 2018 Homework 3

Due Thu March 22, by 5:00pm in Jisu's mailbox.

1. Assume X and Y are integrable random variables. Prove that, for each $r > 0$,

$$
\mathbb{E}|X+Y|^r \leq C_r \left(\mathbb{E}|X|^r + \mathbb{E}|Y|^r\right),
$$

where $C_r = 1$ if $r \in (0, 1]$ and $C_r = 2^{r-1}$ for $r > 1$. *Hint: for* $r > 1$ *use Jensen's inequality. For* $r \in (0,1]$ *use the fact that* $(1+x)^r \leq 1+x^r$ *for* $x > 0$ *.*

2. Prove the following generalization of Hölder inequality. Let p_1, \ldots, p_k positive number such that $\sum_{i=1}^{k}$ $\frac{1}{p_i} = 1$ and let X_1, \ldots, X_k random variables such that $||X_i||_{p_i} < \infty$ for all *i*. Then,

$$
\mathbb{E}\left[\left|\prod_{i=1}^k X_i\right|\right] \leq \prod_{i=1}^k \|X_i\|_{p_i}.
$$

Hint: apply the standard version of Hölder's inequality recursively.

3. Prove Paley-Zygmund's inequality: let *X* be a non-negative random variable with finite variance. Then, for ay $\lambda > 0$,

$$
\mathbb{P}(X \ge \lambda) \ge \frac{\left[(\mathbb{E}[X] - \lambda) + \right]^2}{\mathbb{E}[X^2]}.
$$

If X is non-negative and bounded – that is, $0 \le X \le b$ almost surely for some $b > 0$ – prove that, for all $\lambda \in (0, \mathbb{E}[X]),$

$$
\mathbb{P}(X \ge \lambda) \ge \frac{\mathbb{E}[X] - \lambda}{b - \lambda}.
$$

- 4. Let $X_1, \ldots, X_k \stackrel{i.i.d}{\sim} \text{Uniform}(0, \theta)$, for some $\theta > 0$. Show that $T = \max_i X_i$ is a sufficient statistic for θ by proving that the conditional distribution of the X_i 's given *T* is independent of θ . In this case $\sigma(T)$ is referred to as the sufficient σ -field.¹
- 5. Let *X* and *Y* be random variables over the probability space (Ω, \mathcal{F}, P) . Assume that the range of *Y* is a countable subset *Y* of R such that $P(Y^{-1}(\{y\})) > 0$ for all $y \in \mathcal{Y}$. Show that the conditional expectation of *X* given *Y* is the random variable $q(Y)$, where the function $q: \mathbb{R} \to \mathbb{R}$ is given by

$$
y\mapsto \frac{1}{P\left(Y^{-1}(\{y\})\right)}\int_{Y^{-1}(\{y\})} XdP.
$$

¹There is much more that could be said about sufficiency from the measure theoretic standpoint, including a nice derivation of the Fisher-Neyman factorization theorem. For more details, see Billingsley (1995), Probability and Measure, Wiley, page 450.

In particular, if $Y = 1_A$ for some $A \in \mathcal{F}$ we may speak of the conditional expectation of X given A when referring to $\mathbb{E}[X|Y]$. This is what "conditioning on an event" means.² (Special thanks to Matteo and Pratik for suggesting the problem...).

- 6. If *X* and *Y* are independent random variables with finite expectations on a common probability space (Ω, \mathcal{F}, P) , show that $\mathbb{E}(X|Y) = \mathbb{E}[X]$, a.e. [*P*]. *This can be proved in many ways, some simpler than others. You should try to provide a* measure-theoretic proof of the following, more general result: if C and $\sigma(X)$ are *independent* σ -fields *contained in* \mathcal{F} *, then* $\mathbb{E}[X|\mathcal{C}] = \mathbb{E}[X]$ *, a.e.* [*P*]*.*
- 7. Let *X* be a random variable on (Ω, \mathcal{F}, P) and $\mathcal{C} \subset \mathcal{F}$ a σ -field. Show that, for each $p \geq 1$,

$$
\mathbb{E}\left[|\mathbb{E}[X|\mathcal{C}]|^p\right] \le \mathbb{E}|X|^p.
$$

That is, the condition expectation is a contraction on the L_p space of random variables on (Ω, \mathcal{F}, P) with finite *p*-th moment. In particular, show that the variance of $\mathbb{E}[X|\mathcal{C}]$ is smaller than the variance of *X*. This is a way of formalizing the intuition that conditioning (which can be thought of as extra information) reduces uncertainty.

8. Exponential families.

Below, for two vectors $x = (x_1, \ldots, x_k)$ and $y = (y_1, \ldots, y_k)$ in \mathbb{R}^k , we let $x \cdot y$ denote their inner product $\sum_{i=1}^{k} x_i y_i$. Let μ be a σ -finite measure on $(\mathbb{R}^k, \mathcal{B}^k)$ and let

$$
\Theta = \{ \theta \in \mathbb{R}^k \colon \int_{\mathbb{R}^k} e^{x \cdot \theta} d\mu(x) < \infty \}.
$$

For any $\theta \in \Theta$, let

$$
\psi(\theta) = \log \left(\int_{\mathbb{R}^k} e^{x \cdot \theta} d\mu(x) \right).
$$

The function ψ is know as the log-partition function. For each $\theta \in \Theta$, define the non-negative function

$$
p_{\theta}(x) = \exp(x \cdot \theta - \log \psi(\theta)), \quad \forall x \in \mathbb{R}^k.
$$
 (1)

Notice that, for each $\theta \in \Theta$, $\int_{\mathbb{R}^k} p_{\theta}(x) d\mu(x) = 1$ (this is because the exponential of the log-partition function serves as a normalizing constant), so that we can define the family $\mathcal{P} = \{P_{\theta}, \theta \in \Theta\}$ of probability measures on $(\mathbb{R}^k, \mathcal{B}^k)$, each of the form

$$
P_{\theta}(A) = \int_{A} p_{\theta}(x) d\mu(x), \quad \forall A \in \mathcal{B}^{k}.
$$

²Ale's rant: in many theoretical papers you will see the following mis-use of the expression. In proving that a certain property holds, a general strategy is to define a high-probability good event and to show that the desired property always holds in that event. Way too often the authors will then say that *"...conditionally on this good event, the claimed result follows."* In fact, there is no conditioning at all! The argument is instead as follows: let *R* the event that the result holds and *G* the good event. Then if $G \subseteq R$ and $P(G)$ is large, we must have that the probability $P(R^c)$ that the result fails is small, smaller than $P(G^c)$. As you can see, we have not conditioned on any event.

In particular, since by construction $P_{\theta} \ll \mu$ for all θ , we have that $p_{\theta} = \frac{dP_{\theta}}{d\mu}$.

The family P is known as a k -dimensional standard exponential family of probability distributions. These are the well-behaved type of distributions, with many interesting properties. Below you will derive some of them.

- (a) Prove that all the probability measures in P are equivalent and have the same support (the support of a probability distribution *P* on $(\mathbb{R}^k, \mathcal{B}^k)$ is the smallest closed set *S* such that $P(S) = 1$; if *P* has a density *p* with respect to some σ -finite measure, then *S* is $cl({x : p(x) > 0})$, the closure of all points of positive density).
- (b) Prove that ψ is a convex function on Θ and that Θ is a convex set. *Hint: use H¨older inequality.*
- (c) Prove that $P_{\theta_1} = P_{\theta_2}$ if and only if, for some $\alpha \in (0,1)$,

$$
\psi(\alpha\theta_1 + (1 - \alpha)\theta_2) = \alpha\psi(\theta_1) + (1 - \alpha)\psi(\theta_2).
$$

Notice that if ψ is strictly convex this cannot happen.

Prove that this is equivalent to $(\theta_1 - \theta_2) \cdot x = K$, a.e. [μ], for some $K \in \mathbb{R}$. In turn this is equivalent to $\mu(H^c) = 0$ for some affine subspace of dimension $k - 1$.

(d) Sufficiency. A more common form of the exponential family is obtained by assuming that the parameter space Θ is a subset (typically open) of \mathbb{R}^d , where $d < k$. In this case, the density (w.r.t. *µ*) of a point $x \in \mathbb{R}^k$ is usually expressed, for a given value of the parameter vector $\theta \in \mathbb{R}^d$, as

$$
p_{\theta}(x) = \exp\left(\tau(x) \cdot \theta - \log \psi(\theta)\right),\tag{2}
$$

where $\tau: \mathbb{R}^k \to \mathbb{R}^d$ is a given function. Notice that in this representation, we can parametrize distributions on \mathbb{R}^k with very few parameters $d < k$.

Let *X* be a random vector in \mathbb{R}^k with density (2), for some $\theta \in \Theta \subset \mathbb{R}^k$. Let $T =$ $\tau(X)$, a *d*-dimensional vector. Show that the distribution of *T* is an exponential family on $(\mathbb{R}^k, \mathcal{B}^k)$ with the same natural parameter space Θ as the distribution of X and densities of the form (1) with respect to a new σ -finite measure ν on $(\mathbb{R}^k, \mathcal{B}^k)$. (Find that measure, too!).

Assuming that the common support is finite and that the dominating measure is the counting measure, show that the conditional distribution of X given $T = t$ is uniform over the set $\{x \in \mathbb{R}^k : \tau(x) = t\}$. Conclude that $\tau(X)$ is a sufficient statistic for θ .

(e) Conditionals and Marginals of Exponential Families. For any *x* in the domain of τ , writw $\tau(x) = (t_1, t_2)$, where $t_1 \in \mathbb{R}^l$ and $t_2 = \mathbb{R}^{k-l}$, for some $l = 1, \ldots, k-1$. Similarly, for any $\theta \in \Theta \subset \mathbb{R}^k$, write $\theta = (\theta_1, \theta_2)$ with $\theta_1 \in \mathbb{R}^l$ and $\theta_2 = \mathbb{R}^{k-l}$. Then

$$
\tau(x) \cdot \theta = t_1 \cdot \theta_1 + t_2 \cdot \theta_2.
$$

- i. Show that, for a given $\theta = (\theta_1, \theta_2)$ the conditional distribution of T_1 given T_2 t_2 has a density of the exponential form (1) with respect to a σ -finite measure ν_{t_2} (which depends on t_2) and natural parameter θ_1 . Thus, conditioning on T_2 eliminates the dependence on θ_2 . Conclude that the conditional distribution of T_1 given $T_2 = t_2$ is an exponential family of dimension *l* and with natural parameter space given by $\{\theta_1: (\theta_1, \theta_2) \in \Theta\}.$
- ii. On the other hand, show that the marginal distribution of T_1 has a density of the exponential form (1) with respect to a σ -finite measure ν_{θ_2} , which depends on θ_2 . Notice that the marginal distribution of T_1 still depends on θ_2 (the fact that the dominating measure depends on θ_2 further implies that the log-partition function depends on θ_2). Conclude that (unless θ_2 is fixed and known) the marginal distribution of T_2 is not an exponential family.
- iii. The Erdös-Rényi model is a statistical model for networks (i.e. random graphs). According to this model, the $\binom{n}{2}$ edges in a network with *n* nodes are independent Bernoulli's with common parameter $p \in (0,1)$. Show that this model is a one-dimensional (i.e. $d = 1$) exponential family of probability distributions over the set \mathcal{G}_n of simple undirected graphs. *Hint: the one dimensional sufficient statistic is the number of edges...*