
36-752, Spring 2018
Homework 3

Due Thu March 22, by 5:00pm in Jisu’s mailbox.

1. Assume X and Y are integrable random variables. Prove that, for each r > 0,

E|X + Y |r ≤ Cr (E|X|r + E|Y |r) ,

where Cr = 1 if r ∈ (0, 1] and Cr = 2r−1 for r > 1.
Hint: for r > 1 use Jensen’s inequality. For r ∈ (0, 1] use the fact that (1+x)r ≤ 1+xr

for x ≥ 0.

2. Prove the following generalization of Hölder inequality. Let p1, . . . , pk positive number
such that

k
i=1

1
pi

= 1 and let X1, . . . , Xk random variables such that Xipi < ∞ for
all i. Then,

E



k

i=1

Xi




≤

k

i=1

Xipi .

Hint: apply the standard version of Hölder’s inequality recursively.

3. Prove Paley-Zygmund’s inequality: letX be a non-negative random variable with finite
variance. Then, for ay λ > 0,

P (X ≥ λ) ≥ [(E[X]− λ)+]2

E[X2]
.

If X is non-negative and bounded – that is, 0 ≤ X ≤ b almost surely for some b > 0 –
prove that, for all λ ∈ (0,E[X]),

P (X ≥ λ) ≥ E[X]− λ

b− λ
.

4. Let X1, . . . , Xk
i.i.d∼ Uniform(0, θ), for some θ > 0. Show that T = maxi Xi is a

sufficient statistic for θ by proving that the conditional distribution of the Xi’s given
T is independent of θ. In this case σ(T ) is referred to as the sufficient σ-field.1

5. Let X and Y be random variables over the probability space (Ω,F , P ). Assume that
the range of Y is a countable subset Y of R such that P (Y −1({y})) > 0 for all y ∈ Y .
Show that the conditional expectation of X given Y is the random variable g(Y ), where
the function g : R → R is given by

y → 1

P (Y −1({y}))



Y −1({y})
XdP.

1There is much more that could be said about sufficiency from the measure theoretic standpoint, including
a nice derivation of the Fisher-Neyman factorization theorem. For more details, see Billingsley (1995),
Probability and Measure, Wiley, page 450.
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In particular, if Y = 1A for some A ∈ F we may speak of the conditional expectation of
X given A when referring to E[X|Y ]. This is what “conditioning on an event” means.2

(Special thanks to Matteo and Pratik for suggesting the problem...).

6. If X and Y are independent random variables with finite expectations on a common
probability space (Ω,F , P ), show that E(X|Y ) = E[X], a.e. [P ].
This can be proved in many ways, some simpler than others. You should try to provide
a measure-theoretic proof of the following, more general result: if C and σ(X) are
independent σ-fields contained in F , then E[X|C] = E[X], a.e. [P ].

7. Let X be a random variable on (Ω,F , P ) and C ⊂ F a σ-field. Show that, for each
p ≥ 1,

E [|E[X|C]|p] ≤ E|X|p.
That is, the condition expectation is a contraction on the Lp space of random variables
on (Ω,F , P ) with finite p-th moment. In particular, show that the variance of E[X|C]
is smaller than the variance of X. This is a way of formalizing the intuition that
conditioning (which can be thought of as extra information) reduces uncertainty.

8. Exponential families.
Below, for two vectors x = (x1, . . . , xk) and y = (y1, . . . , yk) in Rk, we let x · y denote
their inner product

k
i=1 xiyi. Let µ be a σ-finite measure on (Rk,Bk) and let

Θ = {θ ∈ Rk :



Rk

ex·θdµ(x) < ∞}.

For any θ ∈ Θ, let

ψ(θ) = log



Rk

ex·θdµ(x)


.

The function ψ is know as the log-partition function. For each θ ∈ Θ, define the
non-negative function

pθ(x) = exp (x · θ − logψ(θ)) , ∀x ∈ Rk. (1)

Notice that, for each θ ∈ Θ,

Rk pθ(x)dµ(x) = 1 (this is because the exponential of

the log-partition function serves as a normalizing constant), so that we can define the
family P = {Pθ, θ ∈ Θ} of probability measures on (Rk,Bk), each of the form

Pθ(A) =



A

pθ(x)dµ(x), ∀A ∈ Bk.

2Ale’s rant: in many theoretical papers you will see the following mis-use of the expression. In proving
that a certain property holds, a general strategy is to define a high-probability good event and to show that
the desired property always holds in that event. Way too often the authors will then say that “...conditionally
on this good event, the claimed result follows.” In fact, there is no conditioning at all! The argument is instead
as follows: let R the event that the result holds and G the good event. Then if G ⊆ R and P (G) is large,
we must have that the probability P (Rc) that the result fails is small, smaller than P (Gc). As you can see,
we have not conditioned on any event.

2



In particular, since by construction Pθ << µ for all θ, we have that pθ =
dPθ

dµ
.

The family P is known as a k-dimensional standard exponential family of probability
distributions. These are the well-behaved type of distributions, with many interesting
properties. Below you will derive some of them.

(a) Prove that all the probability measures in P are equivalent and have the same
support (the support of a probability distribution P on (Rk,Bk) is the smallest
closed set S such that P (S) = 1; if P has a density p with respect to some σ-finite
measure, then S is cl({x : p(x) > 0}), the closure of all points of positive density).

(b) Prove that ψ is a convex function on Θ and that Θ is a convex set. Hint: use
Hölder inequality.

(c) Prove that Pθ1 = Pθ2 if and only if, for some α ∈ (0, 1),

ψ(αθ1 + (1− α)θ2) = αψ(θ1) + (1− α)ψ(θ2).

Notice that if ψ is strictly convex this cannot happen.
Prove that this is equivalent to (θ1 − θ2) · x = K, a.e. [µ], for some K ∈ R. In
turn this is equivalent to µ(Hc) = 0 for some affine subspace of dimension k− 1 .

(d) Sufficiency. A more common form of the exponential family is obtained by
assuming that the parameter space Θ is a subset (typically open) of Rd, where
d < k. In this case, the density (w.r.t. µ) of a point x ∈ Rk is usually expressed,
for a given value of the parameter vector θ ∈ Rd, as

pθ(x) = exp (τ(x) · θ − logψ(θ)) , (2)

where τ : Rk → Rd is a given function. Notice that in this representation, we can
parametrize distributions on Rk with very few parameters d < k.

Let X be a random vector in Rk with density (2), for some θ ∈ Θ ⊂ Rk. Let T =
τ(X), a d-dimensional vector. Show that the distribution of T is an exponential
family on (Rk,Bk) with the same natural parameter space Θ as the distribution
of X and densities of the form (1) with respect to a new σ-finite measure ν on
(Rk,Bk). (Find that measure, too!).
Assuming that the common support is finite and that the dominating measure is
the counting measure, show that the conditional distribution of X given T = t
is uniform over the set {x ∈ Rk : τ(x) = t}. Conclude that τ(X) is a sufficient
statistic for θ.

(e) Conditionals and Marginals of Exponential Families. For any x in the
domain of τ , writw τ(x) = (t1, t2), where t1 ∈ Rl and t2 = Rk−l, for some
l = 1, . . . , k − 1. Similarly, for any θ ∈ Θ ⊂ Rk, write θ = (θ1, θ2) with θ1 ∈ Rl

and θ2 = Rk−l. Then
τ(x) · θ = t1 · θ1 + t2 · θ2.
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i. Show that, for a given θ = (θ1, θ2) the conditional distribution of T1 given T2 =
t2 has a density of the exponential form (1) with respect to a σ-finite measure
νt2 (which depends on t2) and natural parameter θ1. Thus, conditioning on T2

eliminates the dependence on θ2. Conclude that the conditional distribution
of T1 given T2 = t2 is an exponential family of dimension l and with natural
parameter space given by {θ1 : (θ1, θ2) ∈ Θ}.

ii. On the other hand, show that the marginal distribution of T1 has a density
of the exponential form (1) with respect to a σ-finite measure νθ2 , which
depends on θ2. Notice that the marginal distribution of T1 still depends on
θ2 (the fact that the dominating measure depends on θ2 further implies that
the log-partition function depends on θ2). Conclude that (unless θ2 is fixed
and known) the marginal distribution of T2 is not an exponential family.

iii. The Erdös-Rényi model is a statistical model for networks (i.e. random
graphs). According to this model, the


n
2


edges in a network with n nodes

are independent Bernoulli’s with common parameter p ∈ (0, 1). Show that
this model is a one-dimensional (i.e. d = 1) exponential family of probabil-
ity distributions over the set Gn of simple undirected graphs. Hint: the one
dimensional sufficient statistic is the number of edges...
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