36-752, Spring 2018
Homework 3 Solution

Due Thu March 22, by 5:00pm in Jisu’s mailbox.

Points: 100 pts total for the assignment.

1. Assume X and Y are integrable random variables. Prove that, for each r» > 0,
EIX —Y[" < C (EIX]"+ E[Y]),

where C, = 1if r € (0,1] and C, = 2"7! for r > 1.
Hint: forr > 1 use Jensen’s inequality. Forr € (0, 1] use the fact that (1+x)" < 142"
for x> 0.

Points: 10 pts.

Solution.
For > 1, note that f(x) = 2" for > 0 is a convex function, and hence

X1+ Y]
2

" 1 T '
) <3 0xr D).
Taking expectation yields
E[(|X]+ Y]] <2 EIX] +E[Y]).
For r € (0, 1], note that when X # 0,

i Y1\ Y|
(IX] + YD) = |X]" (1+— <ixr (e 20 2 vy
X X7

and such inequality holds when X = 0 as well. Hence taking expectation yields

E[(1X[+ V)] <E[X]"+E[Y]".

2. Prove the following generalization of Holder inequality. Let py, ..., px positive number
such that Zle z% =1 and let X3,..., X}, random variables such that || X;|,, < oo for

all 7. Then,
k k
HXi ] < H ||Xz||pz
i=1 i=1

Hint: apply the standard version of Holder’s inequality recursively.

Points: 10 pts.

E




Solution.

We apply mathematical induction. First, k& < 2 comes from Hélder inequality.
Now, suppose the induction inequality holds for £k = m. When k£ = m + 1, define
Yi,....Y,,and q1,...,qn, as

E:Xi’ ng_l’ Ym:Xme+1, qi = Di, ng—l, qm:—pmpm+1 .
Pm + Pm+1

Then Z:’;lql =y i_ = 1 holds. Hence applying the induction inequality on
Y; and ¢; yields
1Y < T1IYil.-
i=1 i=1
Then applying the relation of X;, Y;, p;, ¢; gives
m+1

m—1
H Xz‘ < (H ||XZ||pz> ||Xme+1||qm'
i=1 =1

Then from = + 42— =1, applying Holder inequality on | X Xomiall,, gives

Pm+1

E

E

||Xme+1||qm - (E [|Xme+1|quE

1
< ((JE (1|5 ] ) (B [!Xmﬂ\qup’?f])p’”“> "

= [1 Xl [ X1l

Hence applying this gives

m+1

1~
=1

E

m+1
i=1

3. Prove Paley-Zygmund’s inequality: let X be a non-negative random variable with finite
variance. Then, for ay A > 0,
(E[X] - )+
E[X?]

P(X >)) >

If X is non-negative and bounded — that is, 0 < X < b almost surely for some b > 0 —
prove that, for all A € (0, E[X]),

Points: 10 pts.



Solution.

Note first that f : R — R by f(z) = x4 := max{z,0} is convex function. And
hence

(E[X] = A), = (ELX — A)), SE[(X —A):] = E[(X — A I(X > \)].

_l’_

Then applying Cauchy-Schwarz inequality gives a further bound as

(EIX] =),

IN
=

(X — A I(X > A)]
E[(X — MA]E[/2(X > \)] (Cauchy-Schwarz)

IA
~_

I
.

E[(X — \)2]P(X > ).

Hence by using (x — A)3 < 2? for A > 0, P(X > \) can be lower bounded as
(EX] =N _ (B[X] =N
P(X > )\) > > =y
K2V 2 g a3 2 B

Also, A € (0,E[X]) implies (E[X]—X), = E[X] — A and A < E[X]|. Hence
0 < X <bas. implies A\ <E[X] <band 0 < (X —N); <b— X as.. Then
E[X] — A can be bounded as

~—

E[X] - A= (E[X] - )), <E[(X = A),[(X > ))]

E[(b— NI(X > \)] = (b— NP(X > \).

IN

Hence P(X > \) can be lower bounded as

(E[X] - )‘)4—

P(X > \) >
R

4. Let X4,..., X} Sy Uniform(0, §), for some 6§ > 0. Show that 7" = max; X; is a
sufficient statistic for 8 by proving that the conditional distribution of the X;’s given
T is independent of §. In this case o(T) is referred to as the sufficient o-field.!

Points: 10 pts.

Solution.
Let R, := (0,00) and fix a set B € Bg:i . Consider a Lebesgue measure Ag on
(B,Bg) and a map m : B — Ry by m(zy,...,x;) = maxj<;<x ;. Now, cosider

IThere is much more that could be said about sufficiency from the measure theoretic standpoint, including
a nice derivation of the Fisher-Neyman factorization theorem. For more details, see Billingsley (1995),
Probability and Measure, Wiley, page 450.



an induced measure pg on (Ry, Br,) as up(A) = Ag(m~1(A)) for all A € Bg, .
Let A; be the Lebesgue measure on (Ry, Bg, ), then A\;(A) = 0 implies

pp(A) = Ag(m~(A)) <Apr (AXRy x o xRy U U (R x - x Ry x A))
<OXxooX: X000+ +4+00X--+-x00Xx0=0,

and hence up < A\;. Also, note that
p((0,n)) = Ap(m™(0,n)) = Ap((0,n)") < Age ((0,n)") = n" < o0

and Ry C [J,,en(0,7n), and hence pp is o-finite. Since A; is o-finite as well, there
exist a Radon-Nikodym derivative %’i—f.

Note that conditional distribution jux|s(r)(-)(-) : B x 2 — [0, 1] is characterized
by that for all B € B, tx|o(ry(B) is a version of E [1xcplo(T)], ie. pxjor(B)(:)
is o(T')-measurable and for all A € o(T),

/ANXla(T)(B)(W)dP:/AlXeB(W)dP~

We will argue that

1 d/LB
B)(w) = ——— B ().
MX|U(T)< )(w) kT(w)’f_l d\, ( (w))
Then since pix () (B)(-) is a function of T', it is o(T")-measurable. Also note that

from Xi,..., X} il Uniform(0,6), 0 < T < 6 a.s., and hence o(T) is generated
by {T71(0,t) : 0 <t < #}. Hence it suffices to show that for all ¢ € (0,6),

1 dps /
—  —~“(T(w))dP = 1 dP.
/T oy T i TP = [ e

Note that the induced measure pr on (Ry,Bgr,) by pr(A) = P(T7'(A)) has

Radon-Nikodym derivative with respect to A\; as ?‘T?(x) = %1(079) (). Then by

using change of variable, LHS can be expanded as

' 1 d/l‘B dILLT
B /0 kak=1 d)\; () d\; (x)I(O,e) (x)dA ()

1 / d,U,B
= — ——(x)d\ (z
Qk 0.4) d>\1( ) 1( )

_ ms((0,1)) — Ag(m~'(0,1))

o oF
Ap((0,6)F)  Arx (BN (0,1)F)
e ok ‘



And RHS can be expanded as

/ IxendP = P(X € B,T € (0,1)) = P(X € BN (0,0)")

T-1(0,t)

= ek .

Honce fy-1 0y errr BET@NAP = Jyovyy LxendP. e, uxion(B)(w) =

W%(T(w)). Since pix|-(r) doesn’t depend on 6, T is a sufficient statis-
tic for 6.

5. Let X and Y be random variables over the probability space (€2, F, P). Assume that
the range of Y is a countable subset ) of R such that P (Y~*({y})) > 0 for all y € ).
Show that the conditional expectation of X given Y is the random variable g(Y'), where
the function g: R — R is given by

1
Y= = / XdP.
P(Y 1({3/})) Y-1({y})
In particular, if Y = 14 for some A € F we may speak of the conditional expec-

tation of X given A when referring to E[X|Y]. This is what “conditioning on an
event” means.? (Special thanks to Matteo and Pratik for suggesting the problem...).
Points: 10 pts.

Solution.

Let v be a measure on (),2Y) induced by P and Y, so that for any A C
Y, v(A) = P(Y"H(A) = 3P '({y})). Since Y is countable, o(Y) =
{Y=1(A): AC Y}. Hence for any B € o(Y), there exists A C Y with B =

2Ale’s rant: in many theoretical papers you will see the following mis-use of the expression. In proving
that a certain property holds, a general strategy is to define a high-probability good event and to show that
the desired property always holds in that event. Way too often the authors will then say that “...conditionally
on this good event, the claimed result follows.” In fact, there is no conditioning at all! The argument is instead
as follows: let R the event that the result holds and G the good event. Then if G C R and P(G) is large,
we must have that the probability P(R) that the result fails is small, smaller than P(G¢). As you can see,
we have not conditioned on any event.



Y ~1(A), and hence applying change of variable gives

/B 9(Y)dP(w) = / 9(Y (w))dP(w)

Y=1(A)

=/Ag(y)dl/(y)
= > gy)r({y})

yeA

— Z / XdP
Y1({y})

yeA

- / XdP.
Y-1(4)

And hence g(Y) = E[X|Y].

6. If X and Y are independent random variables with finite expectations on a common
probability space (2, F, P), show that E(X|Y) = E[X], a.e. [P].
This can be proved in many ways, some simpler than others. You should try to provide

a measure-theoretic proof of the following, more general result: if C and o(X) are
independent o-fields contained in F, then E[X|C] = E[X], a.e. [P].

Points: 10 pts.

Solution.
For any B € C, note that X and Ig is independent, and hence

E[X ] = E[X|E[I5] = E[X]P(B).

And hence
/ XdP =E[XIg| =E[X]P(B) = / E[X]dP.

Hence E[X] is a version of E[X|C].

7. Let X be a random variable on (Q, F, P) and C C F a o-field. Show that, for each
p=1,
E[EX|C]]"] < E|X]”.
That is, the condition expectation is a contraction on the L, space of random variables
on (92, F, P) with finite p-th moment. In particular, show that the variance of E[X|C]

is smaller than the variance of X. This is a way of formalizing the intuition that
conditioning (which can be thought of as extra information) reduces uncertainty.

Points: 10 pts.



Solution.

For p > 1, note that f(x) = 2P for z > 0 is a convex funciton. Hence by applying
conditional Jensen’s inequality,

[E[X[C]]" <E[IX[|g].

Then, taking expectation on both side and applying tower property on the right
yields

E([E[X|C]F] < E[E[XP|G]
—E[XP].

And correspondingly,

Var [E[X|C]] = E [E[X|C)?] — (E [E[X|C]])?
E [X?] — (E[X])* = Var[X].

IA

8. Exponential families.
Below, for two vectors @ = (x1,...,2) and y = (y1,...,yx) in R* we let z - y denote
their inner product Zle z;y;. Let u be a o-finite measure on (R*, B¥) and let

0 = {# € R": / e"’du(z) < oo}
Rk

w(0) =10 [ aute)).

The function ¢ is know as the log-partition function. For each § € O, define the
non-negative function

For any 6 € O, let

po(x) = exp (z -0 —log(F)), Ve RF. (1)

Notice that, for each § € ©, [, po(x)du(z) = 1 (this is because the exponential of
the log-partition function serves as a normalizing constant), so that we can define the
family P = {P5,0 € O} of probability measures on (R*, B*), each of the form

Py(A) = / po(x)du(z), YA€ B

In particular, since by construction Py << u for all #, we have that py = ”&—1;9.

The family P is known as a k-dimensional standard exponential family of probability
distributions. These are the well-behaved type of distributions, with many interesting
properties. Below you will derive some of them.

7



(a)

Prove that all the probability measures in P are equivalent and have the same
support (the support of a probability distribution P on (R, B¥) is the smallest
closed set S such that P(S) = 1; if P has a density p with respect to some o-finite
measure, then S is cl({x: p(z) > 0}), the closure of all points of positive density).

Prove that ¢ is a convex function on © and that © is a convex set. Hint: use
Holder inequality.

Prove that Py, = P, if and only if, for some « € (0, 1),
Y(ab + (1 — a)bz) = ap(01) + (1 — a)(ba).

Notice that if v is strictly convex this cannot happen.
Prove that this is equivalent to (6; — 6;) - © = K, a.e. [u], for some K € R. In
turn this is equivalent to pu(H¢) = 0 for some affine subspace of dimension k¥ —1 .

Sufficiency. A more common form of the exponential family is obtained by
assuming that the parameter space © is a subset (typically open) of R, where
d < k. In this case, the density (w.r.t. u) of a point x € R* is usually expressed,
for a given value of the parameter vector € R?, as

po(z) = exp (7(x) - 0 — log(0)), (2)

where 7: R¥ — R? is a given function. Notice that in this representation, we can
parametrize distributions on R¥ with very few parameters d < k.

Let X be a random vector in R* with density (2), for some § € © C R*. Let T' =
7(X), a d-dimensional vector. Show that the distribution of 7" is an exponential
family on (R*, B*) with the same natural parameter space © as the distribution
of X and densities of the form (1) with respect to a new o-finite measure v on
(R*, B*). (Find that measure, too!).

More impoertantly, Show that the conditional distribution of X given 7' = ¢ is
uniform over the set {x € R*: 7(z) = t}. Conclude that 7(X) is a sufficient
statistic for 6.

Conditionals and Marginals of Exponential Families. For any x in the
domain of 7, writw 7(z) = (t;,t2), where t; € R! and ¢, = R*! for some
| =1,...,k — 1. Similarly, for any § € © C R*, write § = (6, 60,) with §; € R
and 6y = RF~!. Then

T(.I)'&Itl'el—i‘tQ'eg.

i. Show that, for a given 8 = (6, 65) the conditional distribution of T given Ty =
to has a density of the exponential form (1) with respect to a o-finite measure
vy, (which depends on t5) and natural parameter 6;. Thus, conditioning on T
eliminates the dependence on #,. Conclude that the conditional distribution
of T1 given Ty = 5 is an exponential family of dimension [ and with natural
parameter space given by {6, : (61,6:) € ©}.

8



1i.

111.

On the other hand, show that the marginal distribution of 77 has a density
of the exponential form (1) with respect to a o-finite measure vy,, which
depends on f5. Notice that the marginal distribution of 7} still depends on
05 (the fact that the dominating measure depends on 6y further implies that
the log-partition function depends on 6,). Conclude that (unless 65 is fixed
and known) the marginal distribution of 75 is not an exponential family.

The Erdos-Rényi model is a statistical model for networks (i.e. random
graphs). According to this model, the (;L) edges in a network with n nodes
are independent Bernoulli’s with common parameter p € (0,1). Show that
this model is a one-dimensional (i.e. d = 1) exponential family of probabil-
ity distributions over the set G, of simple undirected graphs. Hint: the one

dimensional sufficient statistic is the number of edges...

Points: 30 pts =4 +4 + 4 + 6 + 12.

Solution.

(a)

Note that pg(z) = exp(x -  —log(6)) > 0 for all x € R¥, and hence u(A4) > 0
implies Py(A) = [, po(x)dp(z) > 0, i.e. p < Py. And hence

n <L Py < p.

Hence V0,,0, € ©, Py, < u < Py, < i < Py, holds. Also, for all A € B,
Py(A) >0 < p(A) >0, and hence

supp(p) = supp(Fp).

Hence V6,05 € O, supp(F,) = supp(p) = supp(Fy,).

(b)

For all 61,60, € RF and X\ € [0, 1],

B+ (1= A)s) = log </R

exp (- (A0 + (1 — N\)b1)) du(m))

k

—tog ([ (exple 00" (xp(e -6 dute) )



Note that Py, = Py, if and only if pg, = py, a.e. [u]. And note that

Po,(z) = po,(z) <= exp(z -6 —¢(61)) = exp (z - 02 — ¥(02))
e x@l—w(Ql) :$92—¢(62)
= (01— 02) -z =1p(01) — p(02).
(d)
Define v on (R*, B¥) as v(A) = u(r77(4)), i.e. induced measure. Give partial

order on R¥ as v <y <= z; <y; forall 1 <i <k Then for all t € R* and
At € RF,

P(T e A)=P(1(X) € A
/ exp(r(x) - 8 — (0))dp(z)
{z:7(x)€A}

/ exp(r(x) - 6 — (6))dp(x)
-/

’ exp(t - 0 —(0))dv(t),
and hence P,
d——exp(t 0 —(0)),

and hence the distribution of 7" is of exponential family.

Note that conditional distribution pixo(ry(-)(:) : Bgr x © — [0, 1] is characterized
by that for all B € Bgr, fix|o(r)(B) is a version of E [1x¢p|o(T)], i.e. px|or)(B)(:)
is o(T')-measurable and for all A € o(7),

/ fix(o(r)(B)(w)dP = / 1xep(w)dP.
A A
Given that v is a counting measure, we will argue that

BN {T(w)}))
1xo(r) (B)(w) = v({T(w)}) ‘

Since v is counting measure, any A € o(T) can be expressed as A = T~!(C') with
C' being countable and for all t € C, v({t}) > 0. Then LHS can be expanded as

/AHXJ(T)(B)(OJ)CZP _ /Tl(c) pw(BnN T_l({T(w)}))dP _ /C pw(BNr- ({t}))dp t)

v({T'(w)}) v({t})
_ /C B “&t}g{t}» exp(t - 6 — b (6))du(t)

=Y uBNT ({th) exp(t - § —(6)).

teC

10



And RHS can be expanded as
/A1X€B(w)dp =P(TeC,XeB)=P(XecBnrt0))
-/ gy BP0 = V(O)dtz)
=S e 0 v )

teC

=" uB T {t}) exp(t -6 — v(6)).

teC

Hence [, pxjo(r)(B)(W)dP = [, 1xep(w)dP, Le. pix|oir)(B)(w) = LE0T UL,

v({T(w)})
In particular,. pxr—(B) = “(BD(T{—;)(“}) is uniform over the set {z € R*: 7(x) =
t}.
(d)

Define v on (R*, B*) as v(A) = u(r7(4)), i.e. induced measure. Give partial
order on R¥ as v <y <= x2; <y; forall 1 <i < k. Then for all t € R* and
At € RF,

P(T € A) = P(1(X) € A)
— / exp(7(z) - 0 —(0))du(z)
{z:7(z)€A}

= /—1(,4) exp(7(x) - 0 — (0))du(z)

— [ et 6 - v@)te)
A
and hence
(e)
1.
Note that conditional distribution pir|,¢m)(-)(-) @ Bri x © — [0,1] is charac-

terized by that for all B € Bgi, pinyo(m)(B) is a version of E [15,cp|o(T3)], ie.
pryjo(ry)(B)(+) is o(Th)-measurable and for all A € o0(73),

[ e (BY)aP = [ 1rcnt)ap

Let vq2(-)(+) : Br x R® — [0,1] be the regular conditional probability where
v2(B)(t) = By [1pxrs—t[ 15" (BY)] (t2)- Then [ (f f(tr)dvap(t)) (t2)g(t)dv(t) =

11



[ f(t1)g(t2)dv(t) by standard machinary. Also, let ¢y, (61) = log ([p exp(ty - 01)drap(th)) (t2).
We will argue that

11yjo(1y) (B) (W) = (/B exp(ty - 01 — ¢T2(w)(91))d’/1|2(t1)) (Ta(w)).

Then ppy|o(m)(B) is o(Ts)-measurable. Also, all A € o(T5) can be expressed as
A =T,1(C). Hence LHS can be computed as

/A i1 o1y (B) (@) P
[, ey (B)@)aP)
T, (O)
- / ( / exp(ts - 01—ty (01))dvnpp (1)) (02)dPr(1)
RixC JB
= [ (] explts 63 = (0ot ) exp(t 01+ 1202 = v160)) o)
-/ ( [ e 91>dy1,2<t1>) (t2) exp(tha (61)
RIxC Rk
X (/B exp(ty - 01)dvrja(t1))(t2) exp(ts - 02 — ¥(0))dv(t)
= / (/ exp(t1 . 91)dV1‘2(t1))(t2) exp(t2 . 02 — ¢(0))dy(t)
RixC JB
= /B CeXP(h 01+ by Oy — (0))du(t).

And RHS can be computed as

/1T163(w)dP:P(T1EB,TQGC):/ dPr
A BxC
= / exp(ty - 01 +to - 0 — (0))dv(t).
BxC
Hence [, pryjom)(B)(w)dP = [, 1nep(w)dP, ie.

110 (Ty) (B) (W) = (/B exp(ty - 01 — @/)Tz(w)(@l))d”m(tl)) (T2 (w)).

In particular, fipyr,—i,(B) = [5exp(ty -0y — vy, (61))drr2(t) has a density exp(t; -
01 — ¥y, (01)) with respect to a o-finite measure vy)5. Hence it is an exponential

12



family of dimension [. Also,
Uy (6h) < 00 = </l exp(t1 '91>dV12<t1)) (t2) < o0
R

<= d6, with /

RE—1

(/Rl exp(ty - Ql)dum(tl)) (t2) exp(ts - 02)dv(t) < 00

1 392 with / exp(tl . 91 -+ tg . 92)dy(t) < 00
Rk

<= d6, with (6‘1,92) € @,
and hence its natural parameter is {6, : (01,6,) € O}.
l.
Let vp, be the measure on (R*~! B¥!) defined as for any A; € BF v, (A)

lexAl exp(ts - 02)du(t), and let ¢y, : RN — R as 1, (61) = [ exp(ty - 01)dv, (1),
then

Ve, (61) = / exp(ty - 01)dvp, (t1) = / exp(ty - 1) exp(ty - 02)dv(t) = ¥ (0).
R! RF
Then P(T) € A;) can be expanded as

P(Tl € Al) = /H—l(A )exp(t1 <0 +ty -0y — ¢<0))dy(t)

B / exp(ty - 0 — g, (01)) exp(ty - O2)dv(t)
I (Ar)

_ /A exp(ty - 01 — v, (61))dve, (1),

Hence the marginal distribution of 77 has a density pr, (t1) = exp(t1 - 61 — 1, (02))
with respect to o-finite measure vp,. Since vy, still depends on 6,, the marginal
distribution 7% is not in general an exponential family.

iii.
Let vy, ..., v, be n vertices, and for 1 <17 < j < n, let

P 1, if there exists edges between v; and v;,
Y 0, otherwise.

Then since X;;’s are 1.i.d. Bernoulli(p), P(X;; = x;) = p™i(1 — p)' %4 and

o n(n=1) <~
P(X =z)=p=%i(l—p) 2 = 1o 1yntn—1/2 ()

— exp <(Z xj> log ( p ) n n(nz— Y Jog(1 — p)) Tgo1patn-vya(2).

lL=p
Hence it is one-dimensional exponential family with sufficient statistics ) X;.
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