
36-752, Spring 2018
Homework 3 Solution

Due Thu March 22, by 5:00pm in Jisu’s mailbox.

Points: 100 pts total for the assignment.

1. Assume X and Y are integrable random variables. Prove that, for each r > 0,

E|X − Y |r ≤ Cr (E|X|r + E|Y |r) ,

where Cr = 1 if r ∈ (0, 1] and Cr = 2r−1 for r > 1.
Hint: for r > 1 use Jensen’s inequality. For r ∈ (0, 1] use the fact that (1+x)r ≤ 1+xr

for x ≥ 0.

Points: 10 pts.

Solution.

For r > 1, note that f(x) = xr for x ≥ 0 is a convex function, and hence(
|X|+ |Y |

2

)r
≤ 1

2
(|X|r + |Y |r) .

Taking expectation yields

E [(|X|+ |Y |)r] ≤ 2r−1 (E|X|r + E|Y |r) .

For r ∈ (0, 1], note that when X 6= 0,

(|X|+ |Y |)r = |X|r
(

1 +
|Y |
|X|

)r
≤ |X|r

(
1 +
|Y |r

|X|r

)
= |X|r + |Y |r,

and such inequality holds when X = 0 as well. Hence taking expectation yields

E [(|X|+ |Y |)r] ≤ E|X|r + E|Y |r.

2. Prove the following generalization of Hölder inequality. Let p1, . . . , pk positive number
such that

∑k
i=1

1
pi

= 1 and let X1, . . . , Xk random variables such that ‖Xi‖pi <∞ for
all i. Then,

E

[∣∣∣∣∣
k∏
i=1

Xi

∣∣∣∣∣
]
≤

k∏
i=1

‖Xi‖pi .

Hint: apply the standard version of Hölder’s inequality recursively.

Points: 10 pts.
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Solution.

We apply mathematical induction. First, k ≤ 2 comes from Hölder inequality.
Now, suppose the induction inequality holds for k = m. When k = m+ 1, define
Y1, . . . , Ym and q1, . . . , qm as

Yi = Xi, i ≤ m− 1, Ym = XmXm+1, qi = pi, i ≤ m− 1, qm =
pmpm+1

pm + pm+1

.

Then
∑m

i=1
1
qi

=
∑m+1

i=1
1
pi

= 1 holds. Hence applying the induction inequality on
Yi and qi yields

E

[∣∣∣∣∣
m∏
i=1

Yi

∣∣∣∣∣
]
≤

m∏
i=1

‖Yi‖pi .

Then applying the relation of Xi, Yi, pi, qi gives

E

[∣∣∣∣∣
m+1∏
i=1

Xi

∣∣∣∣∣
]
≤

(
m−1∏
i=1

‖Xi‖pi

)
‖XmXm+1‖qm .

Then from qm
pm

+ qm
pm+1

= 1, applying Hölder inequality on ‖XmXm+1‖qm gives

‖XmXm+1‖qm = (E [|XmXm+1|qm ])
1
qm

≤
((

E
[
|Xm|qm×

pm
qm

]) qm
pm
(
E
[
|Xm+1|qm×

pm+1
qm

]) qm
pm+1

) 1
qm

= ‖Xm‖pm‖Xm+1‖pm+1 .

Hence applying this gives

E

[∣∣∣∣∣
m+1∏
i=1

Xi

∣∣∣∣∣
]
≤

m+1∏
i=1

‖Xi‖pi .

3. Prove Paley-Zygmund’s inequality: let X be a non-negative random variable with finite
variance. Then, for ay λ > 0,

P (X ≥ λ) ≥ [(E[X]− λ)+]2

E[X2]
.

If X is non-negative and bounded – that is, 0 ≤ X ≤ b almost surely for some b > 0 –
prove that, for all λ ∈ (0,E[X]),

P (X ≥ λ) ≥ E[X]− λ
b− λ

.

Points: 10 pts.
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Solution.

Note first that f : R → R by f(x) = x+ := max{x, 0} is convex function. And
hence

(E[X]− λ)+ = (E[X − λ])+ ≤ E [(X − λ)+] = E [(X − λ)+I(X ≥ λ)] .

Then applying Cauchy-Schwarz inequality gives a further bound as

(E[X]− λ)+ ≤ E [(X − λ)+I(X ≥ λ)]

≤
√

E [(X − λ)2
+]E [I2(X ≥ λ)] (Cauchy-Schwarz)

=
√

E [(X − λ)2
+]P(X ≥ λ).

Hence by using (x− λ)2
+ ≤ x2 for λ ≥ 0, P(X ≥ λ) can be lower bounded as

P(X ≥ λ) ≥
(E[X]− λ)2

+

E [(X − λ)2
+]
≥

(E[X]− λ)2
+

E[X2]
.

Also, λ ∈ (0,E[X]) implies (E[X]− λ)+ = E[X] − λ and λ ≤ E[X]. Hence
0 ≤ X ≤ b a.s. implies λ ≤ E[X] ≤ b and 0 ≤ (X − λ)+ ≤ b − λ a.s.. Then
E[X]− λ can be bounded as

E[X]− λ = (E[X]− λ)+ ≤ E [(X − λ)+I(X ≥ λ)]

≤ E [(b− λ)I(X ≥ λ)] = (b− λ)P(X ≥ λ).

Hence P(X ≥ λ) can be lower bounded as

P(X ≥ λ) ≥
(E[X]− λ)+

b− λ
.

4. Let X1, . . . , Xk
i.i.d∼ Uniform(0, θ), for some θ > 0. Show that T = maxiXi is a

sufficient statistic for θ by proving that the conditional distribution of the Xi’s given
T is independent of θ. In this case σ(T ) is referred to as the sufficient σ-field.1

Points: 10 pts.

Solution.

Let R+ := (0,∞) and fix a set B ∈ BRk+ . Consider a Lebesgue measure λB on

(B,BB) and a map m : B → R+ by m(x1, . . . , xk) = max1≤i≤k xi. Now, cosider

1There is much more that could be said about sufficiency from the measure theoretic standpoint, including
a nice derivation of the Fisher-Neyman factorization theorem. For more details, see Billingsley (1995),
Probability and Measure, Wiley, page 450.
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an induced measure µB on (R+,BR+) as µB(A) = λB(m−1(A)) for all A ∈ BR+ .
Let λ1 be the Lebesgue measure on (R+,BR+), then λ1(A) = 0 implies

µB(A) = λB(m−1(A)) ≤ λRk+((A× R+ × · · · × R+) ∪ · · · ∪ (R+ × · · · × R+ × A))

≤ 0×∞× · · · ×∞+ · · ·+∞× · · · ×∞× 0 = 0,

and hence µB � λ1. Also, note that

µB((0, n)) = λB(m−1(0, n)) = λB((0, n)k) ≤ λRk+((0, n)k) = nk <∞

and R+ ⊂
⋃
n∈N(0, n), and hence µB is σ-finite. Since λ1 is σ-finite as well, there

exist a Radon-Nikodym derivative dµB
dλ1

.

Note that conditional distribution µX|σ(T )(·)(·) : BRk+ ×Ω→ [0, 1] is characterized

by that for all B ∈ BRk+ , µX|σ(T )(B) is a version of E [1X∈B|σ(T )], i.e. µX|σ(T )(B)(·)
is σ(T )-measurable and for all A ∈ σ(T ),∫

A

µX|σ(T )(B)(ω)dP =

∫
A

1X∈B(ω)dP.

We will argue that

µX|σ(T )(B)(ω) =
1

kT (ω)k−1

dµB
dλ1

(T (ω)).

Then since µX|σ(T )(B)(·) is a function of T , it is σ(T )-measurable. Also note that

from X1, . . . , Xk
i.i.d∼ Uniform(0, θ), 0 ≤ T ≤ θ a.s., and hence σ(T ) is generated

by {T−1(0, t) : 0 < t < θ}. Hence it suffices to show that for all t ∈ (0, θ),∫
T−1(0,t)

1

kT (ω)k−1

dµB
dλ1

(T (ω))dP =

∫
T−1(0,t)

1X∈BdP.

Note that the induced measure µT on (R+,BR+) by µT (A) = P (T−1(A)) has

Radon-Nikodym derivative with respect to λ1 as dµT
dλ1

(x) = kxk−1

θk
I(0,θ)(x). Then by

using change of variable, LHS can be expanded as∫
T−1(0,t)

1

kT (ω)k−1

dµB
dλ1

(T (ω))dP (ω) =

∫
(0,t)

1

kxk−1

dµB
dλ1

(x)dµT (x)

=

∫ t

0

1

kxk−1

dµB
dλ1

(x)
dµT
dλ1

(x)I(0,θ)(x)dλ1(x)

=
1

θk

∫
(0,t)

dµB
dλ1

(x)dλ1(x)

=
µB((0, t))

θk
=
λB(m−1(0, t))

θk

=
λB((0, t)k)

θk
=
λRk+(B ∩ (0, t)k)

θk
.
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And RHS can be expanded as∫
T−1(0,t)

1X∈BdP = P (X ∈ B, T ∈ (0, t)) = P (X ∈ B ∩ (0, t)k)

=
λRk+(B ∩ (0, t)k)

θk
.

Hence
∫
T−1(0,t)

1
kT (ω)k−1

dµB
dλ1

(T (ω))dP =
∫
T−1(0,t)

1X∈BdP, i.e. µX|σ(T )(B)(ω) =
1

kT (ω)k−1
dµB
dλ1

(T (ω)). Since µX|σ(T ) doesn’t depend on θ, T is a sufficient statis-
tic for θ.

5. Let X and Y be random variables over the probability space (Ω,F , P ). Assume that
the range of Y is a countable subset Y of R such that P (Y −1({y})) > 0 for all y ∈ Y .
Show that the conditional expectation of X given Y is the random variable g(Y ), where
the function g : R→ R is given by

y 7→ 1

P (Y −1({y}))

∫
Y −1({y})

XdP.

In particular, if Y = 1A for some A ∈ F we may speak of the conditional expec-
tation of X given A when referring to E[X|Y ]. This is what “conditioning on an
event” means.2 (Special thanks to Matteo and Pratik for suggesting the problem...).
Points: 10 pts.

Solution.

Let ν be a measure on (Y , 2Y) induced by P and Y , so that for any A ⊂
Y , ν(A) = P (Y −1(A)) =

∑
y∈A P (Y −1({y})). Since Y is countable, σ(Y ) =

{Y −1(A) : A ⊂ Y}. Hence for any B ∈ σ(Y ), there exists A ⊂ Y with B =

2Ale’s rant: in many theoretical papers you will see the following mis-use of the expression. In proving
that a certain property holds, a general strategy is to define a high-probability good event and to show that
the desired property always holds in that event. Way too often the authors will then say that “...conditionally
on this good event, the claimed result follows.” In fact, there is no conditioning at all! The argument is instead
as follows: let R the event that the result holds and G the good event. Then if G ⊆ R and P (G) is large,
we must have that the probability P (Rc) that the result fails is small, smaller than P (Gc). As you can see,
we have not conditioned on any event.
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Y −1(A), and hence applying change of variable gives∫
B

g(Y )dP (ω) =

∫
Y −1(A)

g(Y (ω))dP (ω)

=

∫
A

g(y)dν(y)

=
∑
y∈A

g(y)ν({y})

=
∑
y∈A

∫
Y −1({y})

XdP

=

∫
Y −1(A)

XdP.

And hence g(Y ) = E[X|Y ].

6. If X and Y are independent random variables with finite expectations on a common
probability space (Ω,F , P ), show that E(X|Y ) = E[X], a.e. [P ].
This can be proved in many ways, some simpler than others. You should try to provide
a measure-theoretic proof of the following, more general result: if C and σ(X) are
independent σ-fields contained in F , then E[X|C] = E[X], a.e. [P ].

Points: 10 pts.

Solution.

For any B ∈ C, note that X and IB is independent, and hence

E[XIB] = E[X]E[IB] = E[X]P (B).

And hence ∫
B

XdP = E[XIB] = E[X]P (B) =

∫
B

E[X]dP.

Hence E[X] is a version of E[X|C].

7. Let X be a random variable on (Ω,F , P ) and C ⊂ F a σ-field. Show that, for each
p ≥ 1,

E [|E[X|C]|p] ≤ E|X|p.

That is, the condition expectation is a contraction on the Lp space of random variables
on (Ω,F , P ) with finite p-th moment. In particular, show that the variance of E[X|C]
is smaller than the variance of X. This is a way of formalizing the intuition that
conditioning (which can be thought of as extra information) reduces uncertainty.

Points: 10 pts.
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Solution.

For p ≥ 1, note that f(x) = xp for x ≥ 0 is a convex funciton. Hence by applying
conditional Jensen’s inequality,

|E [X|C]|p ≤ E [|X|p|G] .

Then, taking expectation on both side and applying tower property on the right
yields

E [|E [X|C]|p] ≤ E [E [|X|p|G]]

= E [|X|p] .

And correspondingly,

V ar [E[X|C]] = E
[
E[X|C]2

]
− (E [E[X|C]])2

≤ E
[
X2
]
− (E[X])2 = V ar[X].

8. Exponential families.
Below, for two vectors x = (x1, . . . , xk) and y = (y1, . . . , yk) in Rk, we let x · y denote
their inner product

∑k
i=1 xiyi. Let µ be a σ-finite measure on (Rk,Bk) and let

Θ = {θ ∈ Rk :

∫
Rk
ex·θdµ(x) <∞}.

For any θ ∈ Θ, let

ψ(θ) = log

(∫
Rk
ex·θdµ(x)

)
.

The function ψ is know as the log-partition function. For each θ ∈ Θ, define the
non-negative function

pθ(x) = exp (x · θ − logψ(θ)) , ∀x ∈ Rk. (1)

Notice that, for each θ ∈ Θ,
∫
Rk pθ(x)dµ(x) = 1 (this is because the exponential of

the log-partition function serves as a normalizing constant), so that we can define the
family P = {Pθ, θ ∈ Θ} of probability measures on (Rk,Bk), each of the form

Pθ(A) =

∫
A

pθ(x)dµ(x), ∀A ∈ Bk.

In particular, since by construction Pθ << µ for all θ, we have that pθ = dPθ
dµ

.

The family P is known as a k-dimensional standard exponential family of probability
distributions. These are the well-behaved type of distributions, with many interesting
properties. Below you will derive some of them.
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(a) Prove that all the probability measures in P are equivalent and have the same
support (the support of a probability distribution P on (Rk,Bk) is the smallest
closed set S such that P (S) = 1; if P has a density p with respect to some σ-finite
measure, then S is cl({x : p(x) > 0}), the closure of all points of positive density).

(b) Prove that ψ is a convex function on Θ and that Θ is a convex set. Hint: use
Hölder inequality.

(c) Prove that Pθ1 = Pθ2 if and only if, for some α ∈ (0, 1),

ψ(αθ1 + (1− α)θ2) = αψ(θ1) + (1− α)ψ(θ2).

Notice that if ψ is strictly convex this cannot happen.
Prove that this is equivalent to (θ1 − θ2) · x = K, a.e. [µ], for some K ∈ R. In
turn this is equivalent to µ(Hc) = 0 for some affine subspace of dimension k− 1 .

(d) Sufficiency. A more common form of the exponential family is obtained by
assuming that the parameter space Θ is a subset (typically open) of Rd, where
d < k. In this case, the density (w.r.t. µ) of a point x ∈ Rk is usually expressed,
for a given value of the parameter vector θ ∈ Rd, as

pθ(x) = exp (τ(x) · θ − logψ(θ)) , (2)

where τ : Rk → Rd is a given function. Notice that in this representation, we can
parametrize distributions on Rk with very few parameters d < k.

Let X be a random vector in Rk with density (2), for some θ ∈ Θ ⊂ Rk. Let T =
τ(X), a d-dimensional vector. Show that the distribution of T is an exponential
family on (Rk,Bk) with the same natural parameter space Θ as the distribution
of X and densities of the form (1) with respect to a new σ-finite measure ν on
(Rk,Bk). (Find that measure, too!).
More impoertantly, Show that the conditional distribution of X given T = t is
uniform over the set {x ∈ Rk : τ(x) = t}. Conclude that τ(X) is a sufficient
statistic for θ.

(e) Conditionals and Marginals of Exponential Families. For any x in the
domain of τ , writw τ(x) = (t1, t2), where t1 ∈ Rl and t2 = Rk−l, for some
l = 1, . . . , k − 1. Similarly, for any θ ∈ Θ ⊂ Rk, write θ = (θ1, θ2) with θ1 ∈ Rl

and θ2 = Rk−l. Then
τ(x) · θ = t1 · θ1 + t2 · θ2.

i. Show that, for a given θ = (θ1, θ2) the conditional distribution of T1 given T2 =
t2 has a density of the exponential form (1) with respect to a σ-finite measure
νt2 (which depends on t2) and natural parameter θ1. Thus, conditioning on T2

eliminates the dependence on θ2. Conclude that the conditional distribution
of T1 given T2 = t2 is an exponential family of dimension l and with natural
parameter space given by {θ1 : (θ1, θ2) ∈ Θ}.
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ii. On the other hand, show that the marginal distribution of T1 has a density
of the exponential form (1) with respect to a σ-finite measure νθ2 , which
depends on θ2. Notice that the marginal distribution of T1 still depends on
θ2 (the fact that the dominating measure depends on θ2 further implies that
the log-partition function depends on θ2). Conclude that (unless θ2 is fixed
and known) the marginal distribution of T2 is not an exponential family.

iii. The Erdös-Rényi model is a statistical model for networks (i.e. random
graphs). According to this model, the

(
n
2

)
edges in a network with n nodes

are independent Bernoulli’s with common parameter p ∈ (0, 1). Show that
this model is a one-dimensional (i.e. d = 1) exponential family of probabil-
ity distributions over the set Gn of simple undirected graphs. Hint: the one
dimensional sufficient statistic is the number of edges...

Points: 30 pts = 4 + 4 + 4 + 6 + 12.

Solution.

(a)

Note that pθ(x) = exp(x · θ − logψ(θ)) > 0 for all x ∈ Rk, and hence µ(A) > 0
implies Pθ(A) =

∫
A
pθ(x)dµ(x) > 0, i.e. µ� Pθ. And hence

µ� Pθ � µ.

Hence ∀θ1, θ2 ∈ Θ, Pθ1 � µ � Pθ2 � µ � Pθ1 holds. Also, for all A ∈ Bk,
Pθ(A) > 0 ⇐⇒ µ(A) > 0, and hence

supp(µ) = supp(Pθ).

Hence ∀θ1, θ2 ∈ Θ, supp(Pθ1) = supp(µ) = supp(Pθ2).

(b)

For all θ1, θ2 ∈ Rk and λ ∈ [0, 1],

ψ(λθ1 + (1− λ)θ2) = log

(∫
Rk

exp (x · (λθ1 + (1− λ)θ1)) dµ(x)

)
= log

(∫
Rk

(exp(x · θ1))λ (exp(x · θ2))1−λ dµ(x)

)
≤ log

((∫
Rk

exp(x · θ1)dµ(x)

)λ(∫
Rk

exp(x · θ2)dµ(x)

)1−λ
)

= λ log

(∫
Rk

exp(x · θ1)dµ(x)

)
+ (1− λ) log

(∫
Rk

exp(x · θ2)dµ(x)

)
= λψ(θ1) + (1− λ)ψ(θ2).

(c)
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Note that Pθ1 = Pθ2 if and only if pθ1 = pθ2 a.e. [µ]. And note that

pθ1(x) = pθ2(x) ⇐⇒ exp (x · θ1 − ψ(θ1)) = exp (x · θ2 − ψ(θ2))

⇐⇒ x · θ1 − ψ(θ1) = x · θ2 − ψ(θ2)

⇐⇒ (θ1 − θ2) · x = ψ(θ1)− ψ(θ2).

(d)

Define ν on (Rk,Bk) as ν(A) = µ(τ−1(A)), i.e. induced measure. Give partial
order on Rk as x ≤ y ⇐⇒ xi ≤ yi for all 1 ≤ i ≤ k. Then for all t ∈ Rk and
∆t ∈ Rk,

P (T ∈ A) = P (τ(X) ∈ A)

=

∫
{x: τ(x)∈A}

exp(τ(x) · θ − ψ(θ))dµ(x)

=

∫
τ−1(A)

exp(τ(x) · θ − ψ(θ))dµ(x)

=

∫
A

exp(t · θ − ψ(θ))dν(t),

and hence
dPT
dν

= exp(t · θ − ψ(θ)),

and hence the distribution of T is of exponential family.

Note that conditional distribution µX|σ(T )(·)(·) : BRk ×Ω→ [0, 1] is characterized
by that for all B ∈ BRk , µX|σ(T )(B) is a version of E [1X∈B|σ(T )], i.e. µX|σ(T )(B)(·)
is σ(T )-measurable and for all A ∈ σ(T ),∫

A

µX|σ(T )(B)(ω)dP =

∫
A

1X∈B(ω)dP.

Given that ν is a counting measure, we will argue that

µX|σ(T )(B)(ω) =
µ(B ∩ τ−1({T (ω)}))

ν({T (ω)})
.

Since ν is counting measure, any A ∈ σ(T ) can be expressed as A = T−1(C) with
C being countable and for all t ∈ C, ν({t}) > 0. Then LHS can be expanded as∫
A

µX|σ(T )(B)(ω)dP =

∫
T−1(C)

µ(B ∩ τ−1({T (ω)}))
ν({T (ω)})

dP =

∫
C

µ(B ∩ τ−1({t}))
ν({t})

dPT (t)

=

∫
C

µ(B ∩ τ−1({t}))
ν({t})

exp(t · θ − ψ(θ))dν(t)

=
∑
t∈C

µ(B ∩ τ−1({t})) exp(t · θ − ψ(θ)).
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And RHS can be expanded as∫
A

1X∈B(ω)dP = P (T ∈ C,X ∈ B) = P (X ∈ B ∩ τ−1(C))

=

∫
B∩τ−1(C)

exp(τ(x) · θ − ψ(θ))dµ(x)

=
∑
t∈C

∫
B∩τ−1({t})

exp(t · θ − ψ(θ))dµ(x)

=
∑
t∈C

µ(B ∩ τ−1({t})) exp(t · θ − ψ(θ)).

Hence
∫
A
µX|σ(T )(B)(ω)dP =

∫
A

1X∈B(ω)dP , i.e. µX|σ(T )(B)(ω) = µ(B∩τ−1({T (ω)}))
ν({T (ω)}) .

In particular,. µX|T=t(B) = µ(B∩τ−1({t})
ν({t}) is uniform over the set {x ∈ Rk : τ(x) =

t}.
(d)

Define ν on (Rk,Bk) as ν(A) = µ(τ−1(A)), i.e. induced measure. Give partial
order on Rk as x ≤ y ⇐⇒ xi ≤ yi for all 1 ≤ i ≤ k. Then for all t ∈ Rk and
∆t ∈ Rk,

P (T ∈ A) = P (τ(X) ∈ A)

=

∫
{x: τ(x)∈A}

exp(τ(x) · θ − ψ(θ))dµ(x)

=

∫
τ−1(A)

exp(τ(x) · θ − ψ(θ))dµ(x)

=

∫
A

exp(t · θ − ψ(θ))dν(t),

and hence
dPT
dν

= exp(t · θ − ψ(θ)).

(e)

i.

Note that conditional distribution µT1|σ(T2)(·)(·) : BRl × Ω → [0, 1] is charac-
terized by that for all B ∈ BRl , µT1|σ(T2)(B) is a version of E [1T1∈B|σ(T2)], i.e.
µT1|σ(T2)(B)(·) is σ(T2)-measurable and for all A ∈ σ(T2),∫

A

µT1|σ(T2)(B)(ω)dP =

∫
A

1T1∈B(ω)dP.

Let ν1|2(·)(·) : BRl × Rk → [0, 1] be the regular conditional probability where
ν1|2(B)(t) = Eν

[
1B×Rk−l |Π−1

2 (Bk)
]

(t2). Then
∫ (∫

f(t1)dν1|2(t1)
)

(t2)g(t2)dν(t) =

11



∫
f(t1)g(t2)dν(t) by standard machinary. Also, let ψt2(θ1) = log

(∫
Rl exp(t1 · θ1)dν1|2(t1)

)
(t2).

We will argue that

µT1|σ(T2)(B)(ω) =

(∫
B

exp(t1 · θ1 − ψT2(ω)(θ1))dν1|2(t1)

)
(T2(ω)).

Then µT1|σ(T2)(B) is σ(T2)-measurable. Also, all A ∈ σ(T2) can be expressed as
A = T−1

2 (C). Hence LHS can be computed as∫
A

µT1|σ(T2)(B)(ω)dP

=

∫
T−1
2 (C)

µT1|σ(T2)(B)(ω)dP (ω)

=

∫
Rl×C

(

∫
B

exp(t1 · θ1 − ψt2(θ1))dν1|2(t1))(t2)dPT (t)

=

∫
Rl×C

(

∫
B

exp(t1 · θ1 − ψt2(θ1))dν1|2(t1))(t2) exp(t1 · θ1 + t2 · θ2 − ψ(θ))dν(t)

=

∫
Rl×C

(∫
Rk

exp(t1 · θ1)dν1|2(t1)

)
(t2) exp(ψt2(θ1))

× (

∫
B

exp(t1 · θ1)dν1|2(t1))(t2) exp(t2 · θ2 − ψ(θ))dν(t)

=

∫
Rl×C

(

∫
B

exp(t1 · θ1)dν1|2(t1))(t2) exp(t2 · θ2 − ψ(θ))dν(t)

=

∫
B×C

exp(t1 · θ1 + t2 · θ2 − ψ(θ))dν(t).

And RHS can be computed as∫
A

1T1∈B(ω)dP = P (T1 ∈ B, T2 ∈ C) =

∫
B×C

dPT

=

∫
B×C

exp(t1 · θ1 + t2 · θ2 − ψ(θ))dν(t).

Hence
∫
A
µT1|σ(T2)(B)(ω)dP =

∫
A

1T1∈B(ω)dP , i.e.

µT1|σ(T2)(B)(ω) =

(∫
B

exp(t1 · θ1 − ψT2(ω)(θ1))dν1|2(t1)

)
(T2(ω)).

In particular, µT1|T2=t2(B) =
∫
B

exp(t1 · θ1−ψt2(θ1))dν1|2(t1) has a density exp(t1 ·
θ1 − ψt2(θ1)) with respect to a σ-finite measure ν1|2. Hence it is an exponential

12



family of dimension l. Also,

ψt2(θ1) <∞ ⇐⇒
(∫

Rl
exp(t1 · θ1)dν1|2(t1)

)
(t2) <∞

⇐⇒ ∃θ2 with

∫
Rk−l

(∫
Rl

exp(t1 · θ1)dν1|2(t1)

)
(t2) exp(t2 · θ2)dν(t) <∞

⇐⇒ ∃θ2 with

∫
Rk

exp(t1 · θ1 + t2 · θ2)dν(t) <∞

⇐⇒ ∃θ2 with (θ1, θ2) ∈ Θ,

and hence its natural parameter is {θ1 : (θ1, θ2) ∈ Θ}.
ii.

Let νθ2 be the measure on (Rk−l,Bk−l) defined as for any A1 ∈ Bk−l, νθ2(A1) =∫
Rl×A1

exp(t2 · θ2)dν(t), and let ψθ2 : Rl → R as ψθ2(θ1) =
∫
Rl exp(t1 · θ1)dνθ2(t1),

then

ψθ2(θ1) =

∫
Rl

exp(t1 · θ1)dνθ2(t1) =

∫
Rk

exp(t1 · θ1) exp(t2 · θ2)dν(t) = ψ(θ).

Then P (T1 ∈ A1) can be expanded as

P (T1 ∈ A1) =

∫
Π−1

1 (A1)

exp(t1 · θ1 + t2 · θ2 − ψ(θ))dν(t)

=

∫
Π−1

1 (A1)

exp(t1 · θ1 − ψθ2(θ1)) exp(t2 · θ2)dν(t)

=

∫
A1

exp(t1 · θ1 − ψθ2(θ1))dνθ2(t1),

Hence the marginal distribution of T1 has a density pT1(t1) = exp(t1 · θ1−ψθ1(θ2))
with respect to σ-finite measure νθ2 . Since νθ2 still depends on θ2, the marginal
distribution T2 is not in general an exponential family.

iii.

Let v1, . . . , vn be n vertices, and for 1 ≤ i < j ≤ n, let

Xij =

{
1, if there exists edges between vi and vj,

0, otherwise.

Then since Xij’s are i.i.d. Bernoulli(p), P (Xij = xij) = pxij(1− p)1−xij and

P (X = x) = p
∑
xij(1− p)

n(n−1)
2
−
∑
xijI{0,1}n(n−1)/2(x)

= exp

((∑
xij

)
log

(
p

1− p

)
+
n(n− 1)

2
log(1− p)

)
I{0,1}n(n−1)/2(x).

Hence it is one-dimensional exponential family with sufficient statistics
∑
Xij.
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