36-752, Spring 2018
Homework 4

Due Thu April 5, by 5:00pm in Jisu’s mailbox.

. Recall the maximal inequality for submartinagles proved in class: If X;,..., X, is a
submartingale (with respect to some filtration), then, for any a > 0,
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Show that this inequality implies the following result, known as Kolmogorov’s maximal
inequality: If Xi,..., X, are independent random variables with mean 0 and finite
variances. Then
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. Let X1, X5, ... be a sequence of random vectors in R? and, for each n and j € {1,...,d}
let X,,(j) and X(j) denote the jth coordinate of X,, and X, respectively. Show that

X, 2 X if and only if Xn(9) N X(j) for all j. (Recall that X, L5 X means
X = X[ = 0).

. Let X1, Xs, ... be a sequence of random variables. Show that X,, == 0 if and only if
P
SUPgsp [ Xk| — 0.

. Let (Q,F, ) be a measure space and recall that for a real-value function f on €,
its essential supremum is || f|| = inf{a > 0: p({w: |f(w)] > a}) = 0}. Show that
Il fn — flloo — 0 if and only if there exists a set A such that u(A¢) =0 and

sup | fu(w) = f(w)| =0,

w€eA
i.e. f, converges to f uniformly in A.

. Let X3, X5, ... be a martingale such that E[X,] = 0 and Var[X,,] < oo for all n. Show
that, for each r € N, E[(X,4r — X0)?] = D1 E[(Xnsk — Xntr—1)?]. That is, the
variance of the sum is the sum of the variances.

. The coupon collector problem. Let X, Xs,... be independent random variables
uniformly distributed over {1,...,n}. A coupon collector plays this infinite game: at
each time ¢ he receives a new coupon corresponding to the value of X;. Let T, the
number if times the collector has to play the game until he has collected all n possible
coupons. Show that
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Since 1" i~ ~logn as n — oo, this implies that nﬁ;n I

Hint: if the collector has already 0 < k < n distinct coupons, the probability that
the coupon acquired in the next round of the game is different than all the others is
D = ”T_k Therefore, the number of rounds until a new kind of coupon is obtained is a
Geometric random variable with parameter py. Then E[T,,] =nY 1 i~' ~nlogn and
V[T, <n?Yr i2<n?> 7 i ? < .

. Most of the volume of the unit cube in R” comes from the boundary of
a ball of radius /n/3. Let X = (X3, Xs,...,X,) be vector in R" comprised of
independent random variables uniformly distributed on [—1,1]. Then, for each A C
[—1,1]", P (X € A) is the fraction of the volume of the unit cube [—1, 1] occupied by
A. (Notice that the volume of [—1,1]™ is 2".)
Show that, as n — oo,
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(Recall that for z = (21,...,2) € R, ||z]|? = Y1, 7).

For any ¢ € (0,1), let Ay = {o € [~1,1]": (1= )y/nf3 < |lall < v/n/3(1+¢)}. Use
(1) to show that, for large n, almost all of the volume of [—1,1]™ lies in A ,,.

This result should be very surprising: when ¢ is minuscule and n is large, it says that
most of the volume of [—1,1]™ concentrates around a very thin annulus. This seems
blatantly wrong (draw the picture for the case of n = 2): how can a uniform distri-
bution concentrate?!? In fact, this one of the most striking properties of probability
distributions in high-dimensions.
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. Weak Law of Large Numbers for certain correlated sequences. Let X, X, ...
be a sequence of mean zero and unit variance random variables. Suppose that

COV(XZ',X]') = R(|Z —j’),

for some function R over the non-negative integers (in particular R(0) = 1). Assume
that R(k) — 0 as & — oo. This corresponds to the condition that the correlation
between two random variables in the sequence vanishes as the distance between their
indexes increases. Show that, as n — oo,
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