36-752, Spring 2018 Homework 4

Due Thu April 5, by 5:00pm in Jisu's mailbox.

1. Recall the maximal inequality for submartinagles proved in class: If X_1, \ldots, X_n is a submartingale (with respect to some filtration), then, for any $\alpha > 0$,

$$
\mathbb{P}\left(\max_{k=1,\dots,n} X_k \ge \alpha\right) \le \frac{\mathbb{E}[|X_n|]}{\alpha}.
$$

Show that this inequality implies the following result, known as Kolmogorov's maximal inequality: If X_1, \ldots, X_n are independent random variables with mean 0 and finite variances. Then

$$
\mathbb{P}\left(\max_{k=1,\dots,n}|S_k|\geq\alpha\right)\leq\frac{\text{Var}(S_n)}{\alpha^2}.
$$

- 2. Let X_1, X_2, \ldots be a sequence of random vectors in \mathbb{R}^d and, for each *n* and $j \in \{1, \ldots, d\}$ let $X_n(j)$ and $X(j)$ denote the *j*th coordinate of X_n and X , respectively. Show that $X_n \xrightarrow{P} X$ if and only if $X_n(j) \xrightarrow{P} X(j)$ for all *j*. (Recall that $X_n \xrightarrow{P} X$ means $||X_n - X|| \xrightarrow{P} 0$.
- 3. Let X_1, X_2, \ldots be a sequence of random variables. Show that $X_n \xrightarrow{a.s} 0$ if and only if $\sup_{k\geq n}|X_k| \stackrel{P}{\longrightarrow} 0.$
- 4. Let $(\Omega, \mathcal{F}, \mu)$ be a measure space and recall that for a real-value function f on Ω , its essential supremum is $||f||_{\infty} = \inf\{a > 0: \mu(\{\omega : |f(\omega)| > a\}) = 0\}$. Show that $||f_n - f||_{\infty}$ → 0 if and only if there exists a set *A* such that $\mu(A^c) = 0$ and

$$
\sup_{\omega \in A} |f_n(\omega) - f(\omega)| \to 0,
$$

i.e. *fⁿ* converges to *f* uniformly in *A*.

- 5. Let X_1, X_2, \ldots be a martingale such that $\mathbb{E}[X_n] = 0$ and $\text{Var}[X_n] < \infty$ for all *n*. Show that, for each $r \in \mathbb{N}$, $\mathbb{E}[(X_{n+r} - X_n)^2] = \sum_{k=1}^r \mathbb{E}[(X_{n+k} - X_{n+k-1})^2]$. That is, the variance of the sum is the sum of the variances.
- 6. The coupon collector problem. Let X_1, X_2, \ldots be independent random variables uniformly distributed over $\{1, \ldots, n\}$. A coupon collector plays this infinite game: at each time *i* he receives a new coupon corresponding to the value of X_i . Let T_n the number if times the collector has to play the game until he has collected all *n* possible coupons. Show that

$$
\frac{T_n - n \sum_{i=1}^n i^{-1}}{n \log n} \xrightarrow{P} 0.
$$

Since $\sum_{i=1}^{n} i^{-1} \sim \log n$ as $n \to \infty$, this implies that $\frac{T_n}{n \log n}$ $\stackrel{P}{\longrightarrow}$ 1.

Hint: if the collector has already $0 \leq k < n$ *distinct* coupons, the probability that *the coupon acquired in the next round of the game is di*ff*erent than all the others is* $p_k = \frac{n-k}{n}$. Therefore, the number of rounds until a new kind of coupon is obtained is a *Geometric random variable with parameter* p_k *. Then* $\mathbb{E}[T_n] = n \sum_{i=1}^n i^{-1} \sim n \log n$ and $\mathbb{V}[T_n] \leq n^2 \sum_{i=1}^n i^{-2} \leq n^2 \sum_{i=1}^\infty i^{-2} < \infty.$

7. Most of the volume of the unit cube in \mathbb{R}^n comes from the boundary of **a ball of radius** $\sqrt{n/3}$. Let $X = (X_1, X_2, \ldots, X_n)$ be vector in \mathbb{R}^n comprised of independent random variables uniformly distributed on [−1*,* 1]. Then, for each *A* ⊂ [−1*,* 1] *ⁿ*, *P* (*X* ∈ *A*) is the fraction of the volume of the unit cube [−1*,* 1] *ⁿ* occupied by *A*. (Notice that the volume of $[-1, 1]^n$ is 2^n .) Show that, as $n \to \infty$,

$$
\frac{\|X\|^2}{n} \xrightarrow{P} \frac{1}{3}.\tag{1}
$$

(Recall that for $x = (x_1, \ldots, x) \in \mathbb{R}^n$, $||x||^2 = \sum_{i=1}^n x_i^2$). For any $\epsilon \in (0, 1)$, let $A_{\epsilon,n} = \left\{ x \in [-1, 1]^n : (1 - \epsilon) \sqrt{n/3} \le ||x|| \le \sqrt{n/3}(1 + \epsilon) \right\}$. Use (1) to show that, for large *n*, almost all of the volume of $[-1, 1]^n$ lies in $A_{\epsilon,n}$. This result should be very surprising: when ϵ is minuscule and *n* is large, it says that

most of the volume of $[-1, 1]^n$ concentrates around a very thin annulus. This seems blatantly wrong (draw the picture for the case of $n = 2$): how can a uniform distribution concentrate?!? In fact, this one of the most striking properties of probability distributions in high-dimensions.

8. Weak Law of Large Numbers for certain correlated sequences. Let X_1, X_2, \ldots be a sequence of mean zero and unit variance random variables. Suppose that

$$
Cov(X_i, X_j) = R(|i - j|),
$$

for some function *R* over the non-negative integers (in particular $R(0) = 1$). Assume that $R(k) \to 0$ as $k \to \infty$. This corresponds to the condition that the correlation between two random variables in the sequence vanishes as the distance between their indexes increases. Show that, as $n \to \infty$,

$$
\frac{1}{n}\sum_{i=1}^{n}X_{i}\stackrel{P}{\longrightarrow}0.
$$