
36-752, Spring 2018
Homework 4

Due Thu April 5, by 5:00pm in Jisu’s mailbox.

1. Recall the maximal inequality for submartinagles proved in class: If X1, . . . , Xn is a
submartingale (with respect to some filtration), then, for any α > 0,

P
󰀕

max
k=1,...,n

Xk ≥ α

󰀖
≤ E[|Xn|]

α
.

Show that this inequality implies the following result, known as Kolmogorov’s maximal
inequality: If X1, . . . , Xn are independent random variables with mean 0 and finite
variances. Then

P
󰀕

max
k=1,...,n

|Sk| ≥ α

󰀖
≤ Var(Sn)

α2
.

2. Let X1, X2, . . . be a sequence of random vectors in Rd and, for each n and j ∈ {1, . . . , d}
let Xn(j) and X(j) denote the jth coordinate of Xn and X, respectively. Show that

Xn
P−→ X if and only if Xn(j)

P−→ X(j) for all j. (Recall that Xn
P−→ X means

󰀂Xn −X󰀂 P−→ 0).

3. Let X1, X2, . . . be a sequence of random variables. Show that Xn
a.s.−→ 0 if and only if

supk≥n |Xk|
P−→ 0.

4. Let (Ω,F , µ) be a measure space and recall that for a real-value function f on Ω,
its essential supremum is 󰀂f󰀂∞ = inf{a > 0: µ({ω : |f(ω)| > a}) = 0}. Show that
󰀂fn − f󰀂∞ → 0 if and only if there exists a set A such that µ(Ac) = 0 and

sup
ω∈A

|fn(ω)− f(ω)| → 0,

i.e. fn converges to f uniformly in A.

5. Let X1, X2, . . . be a martingale such that E[Xn] = 0 and Var[Xn] < ∞ for all n. Show
that, for each r ∈ N, E [(Xn+r −Xn)

2] =
󰁓r

k=1 E [(Xn+k −Xn+k−1)
2]. That is, the

variance of the sum is the sum of the variances.

6. The coupon collector problem. Let X1, X2, . . . be independent random variables
uniformly distributed over {1, . . . , n}. A coupon collector plays this infinite game: at
each time i he receives a new coupon corresponding to the value of Xi. Let Tn the
number if times the collector has to play the game until he has collected all n possible
coupons. Show that

Tn − n
󰁓n

i=1 i
−1

n log n

P−→ 0.
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Since
󰁓n

i=1 i
−1 ∼ log n as n → ∞, this implies that Tn

n logn

P−→ 1.
Hint: if the collector has already 0 ≤ k < n distinct coupons, the probability that
the coupon acquired in the next round of the game is different than all the others is
pk =

n−k
n
. Therefore, the number of rounds until a new kind of coupon is obtained is a

Geometric random variable with parameter pk. Then E[Tn] = n
󰁓n

i=1 i
−1 ∼ n log n and

V[Tn] ≤ n2
󰁓n

i=1 i
−2 ≤ n2

󰁓∞
i=1 i

−2 < ∞.

7. Most of the volume of the unit cube in Rn comes from the boundary of
a ball of radius

󰁳
n/3. Let X = (X1, X2, . . . , Xn) be vector in Rn comprised of

independent random variables uniformly distributed on [−1, 1]. Then, for each A ⊂
[−1, 1]n, P (X ∈ A) is the fraction of the volume of the unit cube [−1, 1]n occupied by
A. (Notice that the volume of [−1, 1]n is 2n.)
Show that, as n → ∞,

󰀂X󰀂2
n

P−→ 1

3
. (1)

(Recall that for x = (x1, . . . , x) ∈ Rn, 󰀂x󰀂2 =
󰁓n

i=1 x
2
i ).

For any 󰂃 ∈ (0, 1), let A󰂃,n =
󰁱
x ∈ [−1, 1]n : (1− 󰂃)

󰁳
n/3 ≤ 󰀂x󰀂 ≤

󰁳
n/3(1 + 󰂃)

󰁲
. Use

(1) to show that, for large n, almost all of the volume of [−1, 1]n lies in A󰂃,n.
This result should be very surprising: when 󰂃 is minuscule and n is large, it says that
most of the volume of [−1, 1]n concentrates around a very thin annulus. This seems
blatantly wrong (draw the picture for the case of n = 2): how can a uniform distri-
bution concentrate?!? In fact, this one of the most striking properties of probability
distributions in high-dimensions.

8. Weak Law of Large Numbers for certain correlated sequences. Let X1, X2, . . .
be a sequence of mean zero and unit variance random variables. Suppose that

Cov(Xi, Xj) = R(|i− j|),

for some function R over the non-negative integers (in particular R(0) = 1). Assume
that R(k) → 0 as k → ∞. This corresponds to the condition that the correlation
between two random variables in the sequence vanishes as the distance between their
indexes increases. Show that, as n → ∞,

1

n

n󰁛

i=1

Xi
P−→ 0.
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