36-752, Spring 2018 Homework 4

Due Thu April 5, by 5:00pm in Jisu's mailbox.

1. Recall the maximal inequality for submartingles proved in class: If X_1, \ldots, X_n is a submartingale (with respect to some filtration), then, for any $\alpha > 0$,

$$\mathbb{P}\left(\max_{k=1,\dots,n} X_k \ge \alpha\right) \le \frac{\mathbb{E}[|X_n|]}{\alpha}.$$

Show that this inequality implies the following result, known as Kolmogorov's maximal inequality: If X_1, \ldots, X_n are independent random variables with mean 0 and finite variances. Then

$$\mathbb{P}\left(\max_{k=1,\dots,n} |S_k| \ge \alpha\right) \le \frac{\operatorname{Var}(S_n)}{\alpha^2}$$

- 2. Let X_1, X_2, \ldots be a sequence of random vectors in \mathbb{R}^d and, for each n and $j \in \{1, \ldots, d\}$ let $X_n(j)$ and X(j) denote the jth coordinate of X_n and X, respectively. Show that $X_n \xrightarrow{P} X$ if and only if $X_n(j) \xrightarrow{P} X(j)$ for all j. (Recall that $X_n \xrightarrow{P} X$ means $\|X_n - X\| \xrightarrow{P} 0$).
- 3. Let X_1, X_2, \ldots be a sequence of random variables. Show that $X_n \xrightarrow{a.s.} 0$ if and only if $\sup_{k>n} |X_k| \xrightarrow{P} 0$.
- 4. Let $(\Omega, \mathcal{F}, \mu)$ be a measure space and recall that for a real-value function f on Ω , its essential supremum is $||f||_{\infty} = \inf\{a > 0 \colon \mu(\{\omega \colon |f(\omega)| > a\}) = 0\}$. Show that $||f_n - f||_{\infty} \to 0$ if and only if there exists a set A such that $\mu(A^c) = 0$ and

$$\sup_{\omega \in A} |f_n(\omega) - f(\omega)| \to 0,$$

i.e. f_n converges to f uniformly in A.

- 5. Let X_1, X_2, \ldots be a martingale such that $\mathbb{E}[X_n] = 0$ and $\operatorname{Var}[X_n] < \infty$ for all n. Show that, for each $r \in \mathbb{N}$, $\mathbb{E}[(X_{n+r} X_n)^2] = \sum_{k=1}^r \mathbb{E}[(X_{n+k} X_{n+k-1})^2]$. That is, the variance of the sum is the sum of the variances.
- 6. The coupon collector problem. Let X_1, X_2, \ldots be independent random variables uniformly distributed over $\{1, \ldots, n\}$. A coupon collector plays this infinite game: at each time *i* he receives a new coupon corresponding to the value of X_i . Let T_n the number if times the collector has to play the game until he has collected all *n* possible coupons. Show that

$$\frac{T_n - n \sum_{i=1}^n i^{-1}}{n \log n} \xrightarrow{P} 0.$$

Since $\sum_{i=1}^{n} i^{-1} \sim \log n$ as $n \to \infty$, this implies that $\frac{T_n}{n \log n} \xrightarrow{P} 1$. Hint: if the collector has already $0 \leq k < n$ distinct coupons, the probability that the coupon acquired in the next round of the game is different than all the others is $p_k = \frac{n-k}{n}$. Therefore, the number of rounds until a new kind of coupon is obtained is a Geometric random variable with parameter p_k . Then $\mathbb{E}[T_n] = n \sum_{i=1}^n i^{-1} \sim n \log n$ and $\mathbb{V}[T_n] \leq n^2 \sum_{i=1}^n i^{-2} \leq n^2 \sum_{i=1}^\infty i^{-2} < \infty$.

7. Most of the volume of the unit cube in \mathbb{R}^n comes from the boundary of a ball of radius $\sqrt{n/3}$. Let $X = (X_1, X_2, \ldots, X_n)$ be vector in \mathbb{R}^n comprised of independent random variables uniformly distributed on [-1,1]. Then, for each $A \subset$ $[-1,1]^n$, $P(X \in A)$ is the fraction of the volume of the unit cube $[-1,1]^n$ occupied by A. (Notice that the volume of $[-1, 1]^n$ is 2^n .) Show that, as $n \to \infty$,

$$\frac{\|X\|^2}{n} \xrightarrow{P} \frac{1}{3}.$$
 (1)

(Recall that for $x = (x_1, \dots, x) \in \mathbb{R}^n$, $||x||^2 = \sum_{i=1}^n x_i^2$). For any $\epsilon \in (0, 1)$, let $A_{\epsilon,n} = \left\{ x \in [-1, 1]^n \colon (1 - \epsilon)\sqrt{n/3} \le ||x|| \le \sqrt{n/3}(1 + \epsilon) \right\}$. Use (1) to show that, for large n, almost all of the volume of $[-1,1]^n$ lies in $A_{\epsilon,n}$. This result should be very surprising: when ϵ is minuscule and n is large, it says that

most of the volume of $[-1,1]^n$ concentrates around a very thin annulus. This seems blatantly wrong (draw the picture for the case of n = 2): how can a uniform distribution concentrate?!? In fact, this one of the most striking properties of probability distributions in high-dimensions.

8. Weak Law of Large Numbers for certain correlated sequences. Let X_1, X_2, \ldots be a sequence of mean zero and unit variance random variables. Suppose that

$$\operatorname{Cov}(X_i, X_j) = R(|i - j|),$$

for some function R over the non-negative integers (in particular R(0) = 1). Assume that $R(k) \to 0$ as $k \to \infty$. This corresponds to the condition that the correlation between two random variables in the sequence vanishes as the distance between their indexes increases. Show that, as $n \to \infty$,

$$\frac{1}{n}\sum_{i=1}^{n}X_{i} \xrightarrow{P} 0.$$