36-752, Spring 2018
Homework 4

Due Thu April 5, by 5:00pm in Jisu’s mailbox.

Points: 100 pts total for the assignment.

1. Recall the maximal inequality for submartinagles proved in class: If X,..., X, is a
submartingale (with respect to some filtration), then, for any o > 0,

E[| X,
P(krr%ax X > oz) < M

«

Show that this inequality implies the following result, known as Kolmogorov’s maximal

inequality: If Xy,..., X, are independent random variables with mean 0 and finite
variances. Then Var( S
ar
]P’(max ]Sk|2a) < (2 n)
k=1,...,n o

Points: 13 pts.

Solution.
Let F, = 0(X1,...,X,), and consider Sy := Zle X;. Note first that S? is Fy
measurable and hence E [S,f +1\.7:k] can be expanded as
E [Sp1lFe] = E [(Sk + Xi1)?|Fi] = E [Sq + 25, Xps1 + X1 | Fi
= Sp 4 25k E [ Xy [ Fu] + E [ X7 Fi] -

Then from X, being independent from F, E[X;41] = 0 and E[X?, ] = Var[X;4],

E [Slirl’]:k] - SI? + 2Sk+1]E [XkJrl] +E [X13+J
= SE + Var[Xgs1].

Hence
2 [Slﬂ =E [E [Silfkfl]] =E[S; ]+ Var[Xy] == Z Var[X 00,

and
E [S; 1| Fe] = S;+ Var[Xis1] > Si.
n- Hence applying

=1,...,n 2 @A LIAL VI G WAL Lot VWY RS R=1,...,

E [S?] _ Var[S,]

,,,,, k=1,..n - a? o?
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2. Let X1, Xs, ... be a sequence of random vectors in R? and, for each n and j € {1,...,d}
let X, (7) and X (j) denote the jth coordinate of X,, and X, respectively. Show that

X, 2 X if and only if X, (7) N X(j) for all j. (Recall that X, L5 X means
1%, — X || = 0).
Points: 12 pts.
Solution.

(=) Suppose X, I X, e | X, — X|| L5 0 holds. Then for fixed j €

{1,....d},

(Xa(j) = X(4))? = 1%, = X|I* == 0,

0 <|Xn(j) = X()| < 4

d
Jj=

which implies | X,,(j) — X(j)] = 0, i.e. X;(j) 2 X(j).

(«<=) Suppose X, (j) N X(j), ie. X,(5) — X(H) L5 0 for all j. Then
| X, — X|| = \/ijl(Xn(j) - X(j))? =i \/ijl 02 = 0 by continuous mapping

theorem, and hence X, Lx.

3. Let X1, Xo,... be a sequence of random variables. Show that X,, == 0 if and only if
P
SUPgsy [ Xk| — 0.

Points: 13 pts.

Solution.

(=) Note that if X, (w) — 0, then for all ¢ > 0, there exists N € N with
| Xi| < eforall k > N. Then sup,, |Xi| < € for all n > N as well, and hence

SUPy>, | Xi|(w) — 0. Hence supys,, | Xi| — 0 a.s., which implies sup;,, | Xx| 0.
(=) For each m € N, we can choose n,, € N such that P (sup;s,, |Xx| >27™) <

27™. Then - -
Sp (sup X > 2—m) <Y e,
m=1 k2nm m=1

hence from Borel-Cantelli lemma, P (supys,, |Xx| > 2™ i.0.) = 0. Then for all
w ¢ {Supjs,,, | Xe(w)| > 27 i.0.}, there exists M € N such that for all m > M,
SUPjsn, . | Xk(w)| < 27™. Hence for any € > 0, choose m € N with m > N and
27™ < ¢, then for all n > n,, sups, |[Xp(w)| < supys, [Xo,. (W) < e Hence
SUPgsy [ Xi(w)] = 0 for all w ¢ {sup;=,, |Xp(w)| > 27" io0.}, Le. supys, | X —
0 a.s.. And this implies X,, — 0 a.s. as well.



4. Let (2, F,u) be a measure space and recall that for a real-value function f on (2,
its essential supremum is || f|le = inf{a > 0: p({w: |f(w)| > a}) = 0}. Show that
Il fn — fllo — 0 if and only if there exists a set A such that p(A¢) =0 and

sgg\fn(w — f(w)| =0,

i.e. f, converges to f uniformly in A.

Points: 12 pts.

Solution.
Note that

s 1@ > 1710 = (i {ws £ > 11+ 2 )

n

= i ({0 > 1l 21 =0

(=) Let A= {w € Q: [fulw) = F@)| < [l fu— fllac}. Then

s (AE> — K (U{W €2 |falw) = flw)] > an—fHoo})

n=1

<D nlweQ: [fulw) = F@) > Ifa = fll})
= 0.

And for all w € A, |f,(w) — f(w)| < ||fn — flloo, and hence

0 < sup|fn(w) = f(w)| < [[fn = fllo-

wEA

Then since ||f, — flloo = 0, supyea |fn(w) — f(w)] — 0 as well.

(«<=) Note that for each n € N, | f,,(w) — f(W')| > supyea |fn(w) — f(w)] implies
w' € AL, And hence

(€ 2 1) - 101 > suplfu) - S} ) < (48) =

and hence

0 < 1fn = flloo < sup | fufw) = f()]

Then since sup,,c4 | fn(w) — f(W)] = 0, || fn — flloc — 0 as well.



5. Let X3, X, ... be a martingale such that E[X,,] = 0 and Var[X,,] < oo for all n. Show
that, for each r € N, E[(X,r — X0)?] = D1 E[(Xngk — Xntr—1)?]. That is, the
variance of the sum is the sum of the variances.

Points: 13 pts.

Solution.

Let {X,} be a martingale with respect to F,. Note that from X, being F,
measurable, the following holds:

E [(Xpir — X0)*|Fn] = E [ X2 | Fa] — 2B [ Xy X | F] + E [X2|F]
=E [X},,|Fn] = 2X,E [Xpir | Fu] + X2

Then from E (X4, |F.] = E[E (X, |Fuera] |F) = E[Xuiral B = - = X

the above can be further simplified as
K [(Xn—i-r - Xn)2|]:n} [ n+r|]: } X =E [XZM" XT2L|F7Z:|

Hence

Z E [(Xnik — Xntr-1)?[F]

r

ZE [E [(Xn+k - X”+’€—1)2|]:n+k_1} |]:n}

ol

sl

—_

E |:X72L+k‘ - 2+k—1|~Fn}

=1
= [ n+r XZ"F }
[ n+r ‘-F ]
And then taking expectation on both side gives
E [(Xnr — X0)?] = E [E [(Xpsr — X0)?[F] ]

-

E [(Xn+k — Xn+k—1)2|]:n}

k=1
=D E[(Xutn = Xosr)’]
k=1
6. The coupon collector problem. Let X, X5,... be independent random variables
uniformly distributed over {1,...,n}. A coupon collector plays this infinite game: at

each time ¢ he receives a new coupon corresponding to the value of X;. Let T, the
number if times the collector has to play the game until he has collected all n possible
coupons. Show that

T,—nYy @ it

nlogn

0.
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Since Y1 i~ ~logn as n — oo, this implies that nfg;n Lo

Hint: if the collector has already 0 < k < n distinct coupons, the probability that
the coupon acquired in the next round of the game is different than all the others is
P = ”T_k Therefore, the number of rounds until a new kind of coupon is obtained is a
Geometric random variable with parameter py. Then E[T,] =nY . i~' ~nlogn and
V[T, <n?Y i i2<n?> 7 i ? < .

Points: 13 pts.

Solution.

For k =0,...,n—1, let Y} be the number of times the collector has to play the
game from collecting k distinct coupons to k+1 distinct coupons, i.e. Yy = inf{m :
{X1,. ., X} =k + 1} —inf{m: {X1,..., X,,}| = k}, and let T}, .= S35 Y;
so that T, = T,, ,. Then Y}’s are independent and

== P(XTn,k‘H c {Xl, e 7XTn,k}7 N ,Xka,-‘,-i—l < {Xl, e 7XTn,k}7XTn,k+’i ¢ {Xl, e 7XTn,k})

_ (E)i—ln__k‘

n n

Hence when we let p, = "n;k, Y,’s are independent Geometric py, so that

n
ElY;] = d Yi| = ——.
(Y] — an Var[Yy] CE3E
Hence E[T},] can be computed as
n—1 n—1 n—1 n
_ _ -1
S NAESETE P
k=0 k=0 k=0 i=1
And V[T, ] can be bounded as
n—1 n—1 n—1
VT =V ) Y| => Vv,
k=0 k=0 k=0
n—1 TL2 n 00
2 2 2 -
< m =n Zz <n Zz < 00
k=0 =1 =1
And hence square integral of %{én”l is bounded as
gl (T—ni i | _E[T. -E[T)Y _ V[T
nlogn ~ n2(logn)? ~ n2(logn)?
1 =~
S W Z 1 — 0 asn — oo.

i=1



Hence

T, — nzyzl it ]i 0

nlogn ’
which implies M £ 0. Then by Slutsky theorem,
nlogn
T, T, — vt vt
SIS0V SUSNROY = U SRS}
nlogn nlogn nlogn

7. Most of the volume of the unit cube in R" comes from the boundary of
a ball of radius /n/3. Let X = (X, Xs,...,X,) be vector in R" comprised of
independent random variables uniformly distributed on [—1,1]. Then, for each A C
[—1,1]", P (X € A) is the fraction of the volume of the unit cube [—1, 1] occupied by
A. (Notice that the volume of [—1, 1] is 2".)

Show that, as n — oo,
X[ p 1

- 3 (1)

(Recall that for x = (z1,...,2) € R, ||z]]* = Y., 2?).

i=1Ti
For any ¢ € (0,1), let A, = {:c e [=L1)": (1—e)\/n/3 < ||z]| < /n/3(1 + e)}. Use
(1) to show that, for large n, almost all of the volume of [—1,1]™ lies in A ,,.
This result should be very surprising: when ¢ is minuscule and n is large, it says that
most of the volume of [—1,1]™ concentrates around a very thin annulus. This seems
blatantly wrong (draw the picture for the case of n = 2): how can a uniform distri-
bution concentrate?!? In fact, this one of the most striking properties of probability
distributions in high-dimensions.

Points: 12 pts.

Solution.
Note that E[X7] = 27" [, 2dz = Lt atdey, = 5.Hence by law of large
numbers,
X|? -
IXIE L=y 2y L
n n 3

This implies that for any € > 0,

X2 1
P(‘u——‘ge)—)lasn—)oo.
n 3

Then )“ﬂ;“z — 1 <eifand only if (1—€)/n/3 < ||z]| < \/n/3(1+€), ie. z € A, .
And hence

P(X eA.,) —1lasn— oo.



8. Weak Law of Large Numbers for certain correlated sequences. Let X;, Xo, ...
be a sequence of mean zero and unit variance random variables. Suppose that

Cov(Xi, X;) = R(li — ),

for some function R over the non-negative integers (in particular R(0) = 1). Assume
that R(k) — 0 as & — oo. This corresponds to the condition that the correlation
between two random variables in the sequence vanishes as the distance between their
indexes increases. Show that, as n — oo,

1 & P

Points: 12 pts.

Solution.
Since E[X;] = 0, E[X;X;] = Cov(X;, X;). Hence square integral of £ 37" | X; can
be expanded as

" 2
i=1 i,j=1 i,j=1 t,j=1

Then for each 1 < k < n — 1, there exists 2(n — k) pairs of (i,5) € {1,...,n}?
such that |i — j| = k. Hence

(%Zx) —%(nR(O)—i—nZ_IQ(n— ><Enle

0

3

Then from R(k) — 0, for any € > 0, we can choose K > 0 such that for all k > K,
|R(k)| < §, and for all k, R(k) = COU(XZ,X ) < VVar[X;[Var[X;] = 1 as well.
Hence for any n > £ 2 1—o R(K) is bounded as

’n

9 n—1 9 K-1 n—1 9
- > R(k) = - (Z R(k) + R(k)) - (K +(n— K)4)
k=0 k=0 k=K
2K(1— <
== + ( 0 <€
2 n
Hence %ZZ;; R(k) — 0 as n — oo, and hence

1 & L
E;Xiio

And this implies £ Y% | X; L5 0 as well.



