36-752, Spring 2018 Homework 4

Due Thu April 5, by 5:00pm in Jisu's mailbox.

Points: 100 pts total for the assignment.

1. Recall the maximal inequality for submartinagles proved in class: If X_1, \ldots, X_n is a submartingale (with respect to some filtration), then, for any $\alpha > 0$,

$$
\mathbb{P}\left(\max_{k=1,\dots,n} X_k \ge \alpha\right) \le \frac{\mathbb{E}[|X_n|]}{\alpha}.
$$

Show that this inequality implies the following result, known as Kolmogorov's maximal inequality: If X_1, \ldots, X_n are independent random variables with mean 0 and finite variances. Then

$$
\mathbb{P}\left(\max_{k=1,\dots,n}|S_k| \ge \alpha\right) \le \frac{\text{Var}(S_n)}{\alpha^2}.
$$

Points: 13 pts.

Solution.

Let $\mathcal{F}_n = \sigma(X_1, \ldots, X_n)$, and consider $S_k := \sum_{i=1}^k X_i$. Note first that S_k^2 is \mathcal{F}_k measurable and hence $\mathbb{E}\left[S_{k+1}^2|\mathcal{F}_k\right]$ can be expanded as

$$
\mathbb{E}\left[S_{k+1}^2|\mathcal{F}_k\right] = \mathbb{E}\left[(S_k + X_{k+1})^2|\mathcal{F}_k\right] = \mathbb{E}\left[S_k^2 + 2S_kX_{k+1} + X_{k+1}^2|\mathcal{F}_k\right]
$$

= $S_k^2 + 2S_{k+1}\mathbb{E}\left[X_{k+1}|\mathcal{F}_k\right] + \mathbb{E}\left[X_{k+1}^2|\mathcal{F}_k\right].$

Then from X_{k+1} being independent from \mathcal{F}_k , $\mathbb{E}[X_{k+1}] = 0$ and $\mathbb{E}[X_{k+1}^2] = Var[X_{k+1}]$,

$$
\mathbb{E}\left[S_{k+1}^2|\mathcal{F}_k\right] = S_k^2 + 2S_{k+1}\mathbb{E}\left[X_{k+1}\right] + \mathbb{E}\left[X_{k+1}^2\right] \\
= S_k^2 + Var[X_{k+1}].
$$

Hence

$$
\mathbb{E}\left[S_k^2\right] = \mathbb{E}\left[\mathbb{E}\left[S_k^2|\mathcal{F}_{k-1}\right]\right] = \mathbb{E}[S_{k-1}^2] + Var[X_k] = \cdots = \sum_{i=1}^k Var[X_i] < \infty,
$$

and

$$
\mathbb{E}\left[S_{k+1}^2|\mathcal{F}_k\right] = S_k^2 + Var[X_{k+1}] \ge S_k^2.
$$

Hence $\{S_k^2\}_{k=1,\dots,n}$ is a submartingale with respect to $\{\mathcal{F}_k\}_{k=1,\dots,n}$. Hence applying Kolmogorov's maximal inequality gives

$$
\mathbb{P}\left(\max_{k=1,\dots,n}|S_k|\geq\alpha\right)=\mathbb{P}\left(\max_{k=1,\dots,n}S_k^2\geq\alpha^2\right)\leq\frac{\mathbb{E}\left[S_n^2\right]}{\alpha^2}=\frac{Var[S_n]}{\alpha^2}.
$$

2. Let X_1, X_2, \ldots be a sequence of random vectors in \mathbb{R}^d and, for each n and $j \in \{1, \ldots, d\}$ let $X_n(j)$ and $X(j)$ denote the jth coordinate of X_n and X, respectively. Show that $X_n \longrightarrow X$ if and only if $X_n(j) \longrightarrow X(j)$ for all j. (Recall that $X_n \longrightarrow X$ means $||X_n - X|| \stackrel{P}{\longrightarrow} 0$.

Points: 12 pts.

Solution.

 (\Longrightarrow) Suppose $X_n \stackrel{P}{\longrightarrow} X$, i.e. $||X_n - X|| \stackrel{P}{\longrightarrow} 0$ holds. Then for fixed $j \in$ $\{1,\ldots,d\},\$

$$
0 \le |X_n(j) - X(j)| \le \sqrt{\sum_{j=1}^d (X_n(j) - X(j))^2} = ||X_n - X||^2 \xrightarrow{P} 0,
$$

which implies $|X_n(j) - X(j)| \overset{P}{\to} 0$, i.e. $X_j(j) \overset{P}{\to} X(j)$. (\Longleftarrow) Suppose $X_n(j) \stackrel{P}{\longrightarrow} X(j)$, i.e. $X_n(j) - X(j) \stackrel{P}{\longrightarrow} 0$ for all j. Then $||X_n - X|| = \sqrt{\sum_{j=1}^d (X_n(j) - X(j))^2} \overset{P}{\to} \sqrt{\sum_{j=1}^d 0^2} = 0$ by continuous mapping theorem, and hence $X_n \xrightarrow{P} X$.

3. Let X_1, X_2, \ldots be a sequence of random variables. Show that $X_n \xrightarrow{a.s.} 0$ if and only if $\sup_{k\geq n}|X_k|\stackrel{P}{\longrightarrow} 0.$

Points: 13 pts.

Solution.

 (\implies) Note that if $X_n(\omega) \to 0$, then for all $\epsilon > 0$, there exists $N \in \mathbb{N}$ with $|X_k| < \epsilon$ for all $k \geq N$. Then $\sup_{k \geq n} |X_k| < \epsilon$ for all $n \geq N$ as well, and hence $\sup_{k\geq n}|X_k|(\omega)\to 0.$ Hence $\sup_{k\geq n}|X_k|\to 0$ a.s., which implies $\sup_{k\geq n}|X_k|\stackrel{P}{\longrightarrow} 0.$ (\Longrightarrow) For each $m \in \mathbb{N}$, we can choose $n_m \in \mathbb{N}$ such that $P(\sup_{k \geq n_m} |X_k| > 2^{-m})$ 2^{-m} . Then

$$
\sum_{m=1}^{\infty} P\left(\sup_{k\geq n_m} |X_k| > 2^{-m}\right) < \sum_{m=1}^{\infty} 2^{-m} < \infty,
$$

hence from Borel-Cantelli lemma, $P(\sup_{k\geq n_m}|X_k|>2^{-m}$ i.o.) = 0. Then for all $\omega \notin \{\sup_{k\geq n_m}|X_k(\omega)|>2^{-m} \text{ i.o.}\},\$ there exists $M \in \mathbb{N}$ such that for all $m\geq M,$ $\sup_{k\geq n_m}|\bar{X}_k(\omega)|\leq 2^{-m}$. Hence for any $\epsilon>0$, choose $m\in\mathbb{N}$ with $m\geq N$ and $2^{-m} < \epsilon$, then for all $n \geq n_m$, $\sup_{k \geq n} |X_k(\omega)| \leq \sup_{k \geq n_m} |X_{n_m}(\omega)| < \epsilon$. Hence $\sup_{k\geq n}|X_k(\omega)|\to 0$ for all $\omega\notin \left\{\sup_{k\geq n_m}|X_k(\omega)|>2^{-m}$ i.o., i.e. $\sup_{k\geq n}|X_k|\to\right\}$ 0 a.s.. And this implies $X_n \to 0$ a.s. as well.

4. Let $(\Omega, \mathcal{F}, \mu)$ be a measure space and recall that for a real-value function f on Ω , its essential supremum is $||f||_{\infty} = \inf\{a > 0: \mu(\{\omega: |f(\omega)| > a\}) = 0\}.$ Show that $||f_n - f||_{\infty}$ → 0 if and only if there exists a set A such that $\mu(A^c) = 0$ and

$$
\sup_{\omega \in A} |f_n(\omega) - f(\omega)| \to 0,
$$

i.e. f_n converges to f uniformly in A.

Points: 12 pts.

Solution.

Note that

$$
\mu(\{\omega: |f(\omega)| > ||f||_{\infty}\}) = \mu\left(\lim_{n \to \infty} \left\{\omega: |f(\omega)| > ||f||_{\infty} + \frac{1}{n}\right\}\right)
$$

$$
= \lim_{n \to \infty} \mu\left(\left\{\omega: |f(\omega)| > ||f||_{\infty} + \frac{1}{n}\right\}\right) = 0.
$$

 (\Longrightarrow) Let $A := \bigcap_{n=1}^{\infty} {\{\omega \in \Omega : |f_n(\omega) - f(\omega)| \leq ||f_n - f||_{\infty}\}.$ Then

$$
\mu\left(A^{\complement}\right) = \mu\left(\bigcup_{n=1}^{\infty} \{\omega \in \Omega : |f_n(\omega) - f(\omega)| > ||f_n - f||_{\infty}\}\right)
$$

$$
\leq \sum_{n=1}^{\infty} \mu\left(\{\omega \in \Omega : |f_n(\omega) - f(\omega)| > ||f_n - f||_{\infty}\}\right)
$$

= 0.

And for all $\omega \in A$, $|f_n(\omega) - f(\omega)| \leq ||f_n - f||_{\infty}$, and hence

$$
0 \leq \sup_{\omega \in A} |f_n(\omega) - f(\omega)| \leq ||f_n - f||_{\infty}.
$$

Then since $||f_n - f||_{\infty} \to 0$, $\sup_{\omega \in A} |f_n(\omega) - f(\omega)| \to 0$ as well. (\Longleftarrow) Note that for each $n \in \mathbb{N}$, $|f_n(\omega') - f(\omega')| > \sup_{\omega \in A} |f_n(\omega) - f(\omega)|$ implies $\omega' \in A^{\complement}$. And hence

$$
\mu\left(\left\{\omega' \in \Omega \colon |f_n(\omega') - f(\omega')| > \sup_{\omega \in A} |f_n(\omega) - f(\omega)|\right\}\right) \leq \mu\left(A^{\complement}\right) = 0,
$$

and hence

$$
0 \le ||f_n - f||_{\infty} \le \sup_{\omega \in A} |f_n(\omega) - f(\omega)|.
$$

Then since $\sup_{\omega \in A} |f_n(\omega) - f(\omega)| \to 0$, $||f_n - f||_{\infty} \to 0$ as well.

5. Let X_1, X_2, \ldots be a martingale such that $\mathbb{E}[X_n] = 0$ and $\text{Var}[X_n] < \infty$ for all n. Show that, for each $r \in \mathbb{N}$, $\mathbb{E}[(X_{n+r} - X_n)^2] = \sum_{k=1}^r \mathbb{E}[(X_{n+k} - X_{n+k-1})^2]$. That is, the variance of the sum is the sum of the variances.

Points: 13 pts.

Solution.

Let $\{X_n\}$ be a martingale with respect to \mathcal{F}_n . Note that from X_n being \mathcal{F}_n measurable, the following holds:

$$
\mathbb{E}\left[(X_{n+r} - X_n)^2 | \mathcal{F}_n \right] = \mathbb{E}\left[X_{n+r}^2 | \mathcal{F}_n \right] - 2\mathbb{E}\left[X_{n+r} X_n | \mathcal{F}_n \right] + \mathbb{E}\left[X_n^2 | \mathcal{F}_n \right]
$$

$$
= \mathbb{E}\left[X_{n+r}^2 | \mathcal{F}_n \right] - 2X_n \mathbb{E}\left[X_{n+r} | \mathcal{F}_n \right] + X_n^2.
$$

Then from $\mathbb{E}[X_{n+r}|\mathcal{F}_n] = \mathbb{E}[\mathbb{E}[X_{n+r}|\mathcal{F}_{n+r-1}|\mathcal{F}_n] = \mathbb{E}[X_{n+r-1}|\mathcal{F}_n] = \cdots = X_n,$ the above can be further simplified as

$$
\mathbb{E}\left[(X_{n+r} - X_n)^2 | \mathcal{F}_n \right] = \mathbb{E}\left[X_{n+r}^2 | \mathcal{F}_n \right] - X_n^2 = \mathbb{E}\left[X_{n+r}^2 - X_n^2 | \mathcal{F}_n \right]
$$

Hence

$$
\sum_{k=1}^{r} \mathbb{E} \left[(X_{n+k} - X_{n+k-1})^2 | \mathcal{F}_n \right] = \sum_{k=1}^{r} \mathbb{E} \left[\mathbb{E} \left[(X_{n+k} - X_{n+k-1})^2 | \mathcal{F}_{n+k-1} \right] | \mathcal{F}_n \right]
$$

$$
= \sum_{k=1}^{r} \mathbb{E} \left[X_{n+k}^2 - X_{n+k-1}^2 | \mathcal{F}_n \right]
$$

$$
= \mathbb{E} \left[X_{n+r}^2 - X_n^2 | \mathcal{F}_n \right]
$$

$$
= \mathbb{E} \left[(X_{n+r} - X_n)^2 | \mathcal{F}_n \right].
$$

And then taking expectation on both side gives

$$
\mathbb{E}\left[\left(X_{n+r} - X_n\right)^2\right] = \mathbb{E}\left[\mathbb{E}\left[\left(X_{n+r} - X_n\right)^2 | \mathcal{F}_n\right]\right]
$$

$$
= \mathbb{E}\left[\sum_{k=1}^r \mathbb{E}\left[\left(X_{n+k} - X_{n+k-1}\right)^2 | \mathcal{F}_n\right]\right]
$$

$$
= \sum_{k=1}^r \mathbb{E}\left[\left(X_{n+k} - X_{n+k-1}\right)^2\right].
$$

6. The coupon collector problem. Let X_1, X_2, \ldots be independent random variables uniformly distributed over $\{1, \ldots, n\}$. A coupon collector plays this infinite game: at each time *i* he receives a new coupon corresponding to the value of X_i . Let T_n the number if times the collector has to play the game until he has collected all n possible coupons. Show that

$$
\frac{T_n - n \sum_{i=1}^n i^{-1}}{n \log n} \xrightarrow{P} 0.
$$

Since $\sum_{i=1}^n i^{-1} \sim \log n$ as $n \to \infty$, this implies that $\frac{T_n}{n \log n}$ $\stackrel{P}{\longrightarrow} 1.$

Hint: if the collector has already $0 \leq k < n$ distinct coupons, the probability that the coupon acquired in the next round of the game is different than all the others is $p_k = \frac{n-k}{n}$ $\frac{-k}{n}$. Therefore, the number of rounds until a new kind of coupon is obtained is a Geometric random variable with parameter p_k . Then $\mathbb{E}[T_n] = n \sum_{i=1}^n i^{-1} \sim n \log n$ and $\mathbb{V}[T_n] \leq n^2 \sum_{i=1}^n i^{-2} \leq n^2 \sum_{i=1}^\infty i^{-2} < \infty.$

Points: 13 pts.

Solution.

For $k = 0, \ldots, n - 1$, let Y_k be the number of times the collector has to play the game from collecting k distinct coupons to $k+1$ distinct coupons, i.e. $Y_k = \inf\{m :$ $|\{X_1,\ldots,X_m\}| = k+1\} - \inf\{m : |\{X_1,\ldots,X_m\}| = k\}$, and let $T_{n,k} := \sum_{i=1}^k Y_i$ so that $T_n = T_{n,n}$. Then Y_k 's are independent and

$$
P(Y_k = i)
$$

= $P(X_{T_{n,k}+1} \in \{X_1, \ldots, X_{T_{n,k}}\}, \ldots, X_{T_{n,k}+i-1} \in \{X_1, \ldots, X_{T_{n,k}}\}, X_{T_{n,k}+i} \notin \{X_1, \ldots, X_{T_{n,k}}\})$
= $(\frac{k}{n})^{i-1} \frac{n-k}{n}$.

Hence when we let $p_k = \frac{n-k}{n}$ $\frac{-k}{n}$, Y_k 's are independent Geometric p_k , so that

$$
\mathbb{E}[Y_k] = \frac{n}{n-k} \quad \text{and} \quad Var[Y_k] = \frac{nk}{(n-k)^2}.
$$

Hence $\mathbb{E}[T_n]$ can be computed as

$$
\mathbb{E}[T_n] = \mathbb{E}\left[\sum_{k=0}^{n-1} Y_k\right] = \sum_{k=0}^{n-1} \mathbb{E}[Y_k] = \sum_{k=0}^{n-1} \frac{n}{n-k} = n \sum_{i=1}^{n} i^{-1}.
$$

And $\mathbb{V}[T_n]$ can be bounded as

$$
\mathbb{V}[T_n] = \mathbb{V}\left[\sum_{k=0}^{n-1} Y_k\right] = \sum_{k=0}^{n-1} \mathbb{V}[Y_k] = \sum_{k=0}^{n-1} \frac{nk}{(n-k)^2}
$$

$$
\leq \sum_{k=0}^{n-1} \frac{n^2}{(n-k)^2} = n^2 \sum_{i=1}^{n} i^{-2} \leq n^2 \sum_{i=1}^{\infty} i^{-2} < \infty.
$$

And hence square integral of $\frac{T_n - n \sum_{i=1}^n i^{-1}}{n \log n}$ $\frac{n_{\sum_{i=1}^{n}}}{n \log n}$ is bounded as

$$
\mathbb{E}\left[\left(\frac{T_n - n\sum_{i=1}^n i^{-1}}{n\log n}\right)^2\right] = \frac{\mathbb{E}\left[(T_n - \mathbb{E}[T_n])^2\right]}{n^2(\log n)^2} = \frac{\mathbb{V}[T_n]}{n^2(\log n)^2}
$$

$$
\leq \frac{1}{(\log n)^2} \sum_{i=1}^\infty i^{-2} \to 0 \text{ as } n \to \infty.
$$

Hence

$$
\frac{T_n - n \sum_{i=1}^n i^{-1}}{n \log n} \xrightarrow{L_2} 0,
$$

which implies $\frac{T_n - n \sum_{i=1}^n i^{-1}}{n \log n}$ $n \log n$ $\stackrel{P}{\rightarrow}$ 0. Then by Slutsky theorem,

$$
\frac{T_n}{n \log n} = \frac{T_n - n \sum_{i=1}^n i^{-1}}{n \log n} + \frac{n \sum_{i=1}^n i^{-1}}{n \log n} \xrightarrow{P} 0 + 1 = 1.
$$

7. Most of the volume of the unit cube in \mathbb{R}^n comes from the boundary of **a ball of radius** $\sqrt{n/3}$. Let $X = (X_1, X_2, \ldots, X_n)$ be vector in \mathbb{R}^n comprised of independent random variables uniformly distributed on $[-1, 1]$. Then, for each $A \subset$ $[-1,1]^n$, $P(X \in A)$ is the fraction of the volume of the unit cube $[-1,1]^n$ occupied by A. (Notice that the volume of $[-1, 1]$ ⁿ is 2^n .) Show that, as $n \to \infty$,

$$
\frac{\|X\|^2}{n} \xrightarrow{P} \frac{1}{3}.\tag{1}
$$

(Recall that for $x = (x_1, ..., x) \in \mathbb{R}^n$, $||x||^2 = \sum_{i=1}^n x_i^2$). For any $\epsilon \in (0,1)$, let $A_{\epsilon,n} = \left\{ x \in [-1,1]^n : (1-\epsilon)\sqrt{n/3} \le ||x|| \le \sqrt{n/3}(1+\epsilon) \right\}$. Use (1) to show that, for large n, almost all of the volume of $[-1, 1]^n$ lies in $A_{\epsilon,n}$. This result should be very surprising: when ϵ is minuscule and n is large, it says that most of the volume of $[-1, 1]^n$ concentrates around a very thin annulus. This seems blatantly wrong (draw the picture for the case of $n = 2$): how can a uniform distribution concentrate?!? In fact, this one of the most striking properties of probability distributions in high-dimensions.

Points: 12 pts.

Solution.

Note that $\mathbb{E}[X_i^2] = 2^{-n} \int_{[-1,1]^n} x_1^2 dx = \frac{1}{2}$ $\frac{1}{2} \int_{-1}^{1} x_1^2 dx_1 = \frac{1}{3}$ $\frac{1}{3}$. Hence by law of large numbers,

$$
\frac{\|X\|^2}{n} = \frac{1}{n} \sum_{i=1}^n X_i^2 \xrightarrow{P} \frac{1}{3}.
$$

This implies that for any $\epsilon > 0$,

$$
P\left(\left|\frac{\|X\|^2}{n} - \frac{1}{3}\right| \le \epsilon\right) \to 1 \text{ as } n \to \infty.
$$

 $\left| \begin{array}{c} \text{Then} \\ \text{A} & \text{B} \end{array} \right|$ $\frac{||x||^2}{n} - \frac{1}{3}$ 3 $\leq \epsilon$ if and only if $(1-\epsilon)\sqrt{n/3} \leq ||x|| \leq \sqrt{n/3}(1+\epsilon)$, i.e. $x \in A_{\epsilon,n}$. And hence

$$
P(X \in A_{\epsilon,n}) \to 1 \text{ as } n \to \infty.
$$

8. Weak Law of Large Numbers for certain correlated sequences. Let X_1, X_2, \ldots be a sequence of mean zero and unit variance random variables. Suppose that

$$
Cov(X_i, X_j) = R(|i - j|),
$$

for some function R over the non-negative integers (in particular $R(0) = 1$). Assume that $R(k) \to 0$ as $k \to \infty$. This corresponds to the condition that the correlation between two random variables in the sequence vanishes as the distance between their indexes increases. Show that, as $n \to \infty$,

$$
\frac{1}{n}\sum_{i=1}^{n}X_{i}\stackrel{P}{\longrightarrow}0.
$$

Points: 12 pts.

Solution.

Since $\mathbb{E}[X_i] = 0$, $\mathbb{E}[X_i X_j] = Cov(X_i, X_j)$. Hence square integral of $\frac{1}{n} \sum_{i=1}^n X_i$ can be expanded as

$$
\mathbb{E}\left[\left(\frac{1}{n}\sum_{i=1}^{n}X_i\right)^2\right] = \frac{1}{n^2}\sum_{i,j=1}^{n}\mathbb{E}[X_iX_j] = \frac{1}{n^2}\sum_{i,j=1}^{n}Cov(X_i,X_j) = \frac{1}{n^2}\sum_{i,j=1}^{n}R(|i-j|).
$$

Then for each $1 \leq k \leq n-1$, there exists $2(n-k)$ pairs of $(i, j) \in \{1, \ldots, n\}^2$ such that $|i - j| = k$. Hence

$$
\mathbb{E}\left[\left(\frac{1}{n}\sum_{i=1}^{n}X_i\right)^2\right] = \frac{1}{n^2}\left(nR(0) + \sum_{k=1}^{n-1}2(n-k)R(k)\right) \le \frac{2}{n}\sum_{k=0}^{n-1}R(k).
$$

Then from $R(k) \to 0$, for any $\epsilon > 0$, we can choose $K > 0$ such that for all $k \geq K$, $|R(k)| < \frac{\epsilon}{4}$ $\frac{\epsilon}{4}$, and for all k, $R(k) = Cov(X_i, X_j) \leq \sqrt{Var[X_i]Var[X_j]} = 1$ as well. Hence for any $n \geq \frac{4K}{\epsilon}$ $\frac{K}{\epsilon}, \frac{2}{n}$ $\frac{2}{n}\sum_{k=0}^{n-1} R(k)$ is bounded as

$$
\frac{2}{n} \sum_{k=0}^{n-1} R(k) = \frac{2}{n} \left(\sum_{k=0}^{K-1} R(k) + \sum_{k=K}^{n-1} R(k) \right) \le \frac{2}{n} \left(K + (n - K) \frac{\epsilon}{4} \right)
$$

$$
= \frac{\epsilon}{2} + \frac{2K(1 - \frac{\epsilon}{4})}{n} < \epsilon.
$$

Hence $\frac{2}{n} \sum_{k=0}^{n-1} R(k) \to 0$ as $n \to \infty$, and hence

$$
\frac{1}{n}\sum_{i=1}^n X_i \stackrel{L_2}{\to} 0.
$$

And this implies $\frac{1}{n} \sum_{i=1}^{n} X_i \stackrel{P}{\longrightarrow} 0$ as well.