
36-752, Spring 2018
Homework 4

Due Thu April 5, by 5:00pm in Jisu’s mailbox.

Points: 100 pts total for the assignment.

1. Recall the maximal inequality for submartinagles proved in class: If X1, . . . , Xn is a
submartingale (with respect to some filtration), then, for any α > 0,

P
(

max
k=1,...,n

Xk ≥ α

)
≤ E[|Xn|]

α
.

Show that this inequality implies the following result, known as Kolmogorov’s maximal
inequality: If X1, . . . , Xn are independent random variables with mean 0 and finite
variances. Then

P
(

max
k=1,...,n

|Sk| ≥ α

)
≤ Var(Sn)

α2
.

Points: 13 pts.

Solution.

Let Fn = σ(X1, . . . , Xn), and consider Sk :=
∑k

i=1Xi. Note first that S2
k is Fk

measurable and hence E
[
S2
k+1|Fk

]
can be expanded as

E
[
S2
k+1|Fk

]
= E

[
(Sk +Xk+1)

2|Fk
]

= E
[
S2
k + 2SkXk+1 +X2

k+1|Fk
]

= S2
k + 2Sk+1E [Xk+1|Fk] + E

[
X2
k+1|Fk

]
.

Then fromXk+1 being independent from Fk, E[Xk+1] = 0 and E[X2
k+1] = V ar[Xk+1],

E
[
S2
k+1|Fk

]
= S2

k + 2Sk+1E [Xk+1] + E
[
X2
k+1

]
= S2

k + V ar[Xk+1].

Hence

E
[
S2
k

]
= E

[
E
[
S2
k |Fk−1

]]
= E[S2

k−1] + V ar[Xk] = · · · =
k∑
i=1

V ar[Xi] <∞,

and
E
[
S2
k+1|Fk

]
= S2

k + V ar[Xk+1] ≥ S2
k .

Hence {S2
k}k=1,...,n is a submartingale with respect to {Fk}k=1,...,n. Hence applying

Kolmogorov’s maximal inequality gives

P
(

max
k=1,...,n

|Sk| ≥ α

)
= P

(
max
k=1,...,n

S2
k ≥ α2

)
≤ E [S2

n]

α2
=
V ar[Sn]

α2
.
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2. Let X1, X2, . . . be a sequence of random vectors in Rd and, for each n and j ∈ {1, . . . , d}
let Xn(j) and X(j) denote the jth coordinate of Xn and X, respectively. Show that

Xn
P−→ X if and only if Xn(j)

P−→ X(j) for all j. (Recall that Xn
P−→ X means

‖Xn −X‖
P−→ 0).

Points: 12 pts.

Solution.

(=⇒) Suppose Xn
P−→ X, i.e. ‖Xn − X‖ P−→ 0 holds. Then for fixed j ∈

{1, . . . , d},

0 ≤ |Xn(j)−X(j)| ≤

√√√√ d∑
j=1

(Xn(j)−X(j))2 = ‖Xn −X‖2
P−→ 0,

which implies |Xn(j)−X(j)| P→ 0, i.e. Xj(j)
P→ X(j).

(⇐=) Suppose Xn(j)
P−→ X(j), i.e. Xn(j) − X(j)

P−→ 0 for all j. Then

‖Xn − X‖ =
√∑d

j=1(Xn(j)−X(j))2
P→
√∑d

j=1 02 = 0 by continuous mapping

theorem, and hence Xn
P−→ X.

3. Let X1, X2, . . . be a sequence of random variables. Show that Xn
a.s.−→ 0 if and only if

supk≥n |Xk|
P−→ 0.

Points: 13 pts.

Solution.

(=⇒) Note that if Xn(ω) → 0, then for all ε > 0, there exists N ∈ N with
|Xk| < ε for all k ≥ N . Then supk≥n |Xk| < ε for all n ≥ N as well, and hence

supk≥n |Xk|(ω)→ 0. Hence supk≥n |Xk| → 0 a.s., which implies supk≥n |Xk|
P−→ 0.

(=⇒) For eachm ∈ N, we can choose nm ∈ N such that P
(
supk≥nm

|Xk| > 2−m
)
<

2−m. Then
∞∑
m=1

P

(
sup
k≥nm

|Xk| > 2−m
)
<

∞∑
m=1

2−m <∞,

hence from Borel-Cantelli lemma, P
(
supk≥nm

|Xk| > 2−m i.o.
)

= 0. Then for all
ω /∈

{
supk≥nm

|Xk(ω)| > 2−m i.o.
}

, there exists M ∈ N such that for all m ≥ M ,
supk≥nm

|Xk(ω)| ≤ 2−m. Hence for any ε > 0, choose m ∈ N with m ≥ N and
2−m < ε, then for all n ≥ nm, supk≥n |Xk(ω)| ≤ supk≥nm

|Xnm(ω)| < ε. Hence
supk≥n |Xk(ω)| → 0 for all ω /∈

{
supk≥nm

|Xk(ω)| > 2−m i.o.
}

, i.e. supk≥n |Xk| →
0 a.s.. And this implies Xn → 0 a.s. as well.
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4. Let (Ω,F , µ) be a measure space and recall that for a real-value function f on Ω,
its essential supremum is ‖f‖∞ = inf{a > 0: µ({ω : |f(ω)| > a}) = 0}. Show that
‖fn − f‖∞ → 0 if and only if there exists a set A such that µ(Ac) = 0 and

sup
ω∈A
|fn(ω)− f(ω)| → 0,

i.e. fn converges to f uniformly in A.

Points: 12 pts.

Solution.

Note that

µ({ω : |f(ω)| > ‖f‖∞}) = µ

(
lim
n→∞

{
ω : |f(ω)| > ‖f‖∞ +

1

n

})
= lim

n→∞
µ

({
ω : |f(ω)| > ‖f‖∞ +

1

n

})
= 0.

(=⇒) Let A :=
⋂∞
n=1{ω ∈ Ω : |fn(ω)− f(ω)| ≤ ‖fn − f‖∞}. Then

µ
(
A{
)

= µ

(
∞⋃
n=1

{ω ∈ Ω : |fn(ω)− f(ω)| > ‖fn − f‖∞}

)

≤
∞∑
n=1

µ ({ω ∈ Ω : |fn(ω)− f(ω)| > ‖fn − f‖∞})

= 0.

And for all ω ∈ A, |fn(ω)− f(ω)| ≤ ‖fn − f‖∞, and hence

0 ≤ sup
ω∈A
|fn(ω)− f(ω)| ≤ ‖fn − f‖∞.

Then since ‖fn − f‖∞ → 0, supω∈A |fn(ω)− f(ω)| → 0 as well.

(⇐=) Note that for each n ∈ N, |fn(ω′)− f(ω′)| > supω∈A |fn(ω)− f(ω)| implies
ω′ ∈ A{. And hence

µ

({
ω′ ∈ Ω: |fn(ω′)− f(ω′)| > sup

ω∈A
|fn(ω)− f(ω)|

})
≤ µ

(
A{
)

= 0,

and hence
0 ≤ ‖fn − f‖∞ ≤ sup

ω∈A
|fn(ω)− f(ω)|.

Then since supω∈A |fn(ω)− f(ω)| → 0, ‖fn − f‖∞ → 0 as well.
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5. Let X1, X2, . . . be a martingale such that E[Xn] = 0 and Var[Xn] <∞ for all n. Show
that, for each r ∈ N, E [(Xn+r −Xn)2] =

∑r
k=1 E [(Xn+k −Xn+k−1)

2]. That is, the
variance of the sum is the sum of the variances.

Points: 13 pts.

Solution.

Let {Xn} be a martingale with respect to Fn. Note that from Xn being Fn
measurable, the following holds:

E
[
(Xn+r −Xn)2|Fn

]
= E

[
X2
n+r|Fn

]
− 2E [Xn+rXn|Fn] + E

[
X2
n|Fn

]
= E

[
X2
n+r|Fn

]
− 2XnE [Xn+r|Fn] +X2

n.

Then from E [Xn+r|Fn] = E [E [Xn+r|Fn+r−1] |Fn] = E [Xn+r−1|Fn] = · · · = Xn,
the above can be further simplified as

E
[
(Xn+r −Xn)2|Fn

]
= E

[
X2
n+r|Fn

]
−X2

n = E
[
X2
n+r −X2

n|Fn
]

Hence

r∑
k=1

E
[
(Xn+k −Xn+k−1)

2|Fn
]

=
r∑

k=1

E
[
E
[
(Xn+k −Xn+k−1)

2|Fn+k−1
]
|Fn
]

=
r∑

k=1

E
[
X2
n+k −X2

n+k−1|Fn
]

= E
[
X2
n+r −X2

n|Fn
]

= E
[
(Xn+r −Xn)2|Fn

]
.

And then taking expectation on both side gives

E
[
(Xn+r −Xn)2

]
= E

[
E
[
(Xn+r −Xn)2|Fn

]]
= E

[
r∑

k=1

E
[
(Xn+k −Xn+k−1)

2|Fn
]]

=
r∑

k=1

E
[
(Xn+k −Xn+k−1)

2
]
.

6. The coupon collector problem. Let X1, X2, . . . be independent random variables
uniformly distributed over {1, . . . , n}. A coupon collector plays this infinite game: at
each time i he receives a new coupon corresponding to the value of Xi. Let Tn the
number if times the collector has to play the game until he has collected all n possible
coupons. Show that

Tn − n
∑n

i=1 i
−1

n log n

P−→ 0.
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Since
∑n

i=1 i
−1 ∼ log n as n→∞, this implies that Tn

n logn

P−→ 1.
Hint: if the collector has already 0 ≤ k < n distinct coupons, the probability that
the coupon acquired in the next round of the game is different than all the others is
pk = n−k

n
. Therefore, the number of rounds until a new kind of coupon is obtained is a

Geometric random variable with parameter pk. Then E[Tn] = n
∑n

i=1 i
−1 ∼ n log n and

V[Tn] ≤ n2
∑n

i=1 i
−2 ≤ n2

∑∞
i=1 i

−2 <∞.

Points: 13 pts.

Solution.

For k = 0, . . . , n− 1, let Yk be the number of times the collector has to play the
game from collecting k distinct coupons to k+1 distinct coupons, i.e. Yk = inf{m :
|{X1, . . . , Xm}| = k + 1} − inf{m : |{X1, . . . , Xm}| = k}, and let Tn,k :=

∑k
i=1 Yi

so that Tn = Tn,n. Then Yk’s are independent and

P (Yk = i)

= P (XTn,k+1 ∈ {X1, . . . , XTn,k
}, . . . , XTn,k+i−1 ∈ {X1, . . . , XTn,k

}, XTn,k+i /∈ {X1, . . . , XTn,k
})

= (
k

n
)i−1

n− k
n

.

Hence when we let pk = n−k
n

, Yk’s are independent Geometric pk, so that

E[Yk] =
n

n− k
and V ar[Yk] =

nk

(n− k)2
.

Hence E[Tn] can be computed as

E[Tn] = E

[
n−1∑
k=0

Yk

]
=

n−1∑
k=0

E[Yk] =
n−1∑
k=0

n

n− k
= n

n∑
i=1

i−1.

And V[Tn] can be bounded as

V[Tn] = V

[
n−1∑
k=0

Yk

]
=

n−1∑
k=0

V[Yk] =
n−1∑
k=0

nk

(n− k)2

≤
n−1∑
k=0

n2

(n− k)2
= n2

n∑
i=1

i−2 ≤ n2

∞∑
i=1

i−2 <∞.

And hence square integral of
Tn−n

∑n
i=1 i

−1

n logn
is bounded as

E

[(
Tn − n

∑n
i=1 i

−1

n log n

)2
]

=
E [(Tn − E[Tn])2]

n2(log n)2
=

V[Tn]

n2(log n)2

≤ 1

(log n)2

∞∑
i=1

i−2 → 0 as n→∞.
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Hence
Tn − n

∑n
i=1 i

−1

n log n

L2→ 0,

which implies
Tn−n

∑n
i=1 i

−1

n logn

P→ 0. Then by Slutsky theorem,

Tn
n log n

=
Tn − n

∑n
i=1 i

−1

n log n
+
n
∑n

i=1 i
−1

n log n

P→ 0 + 1 = 1.

7. Most of the volume of the unit cube in Rn comes from the boundary of
a ball of radius

√
n/3. Let X = (X1, X2, . . . , Xn) be vector in Rn comprised of

independent random variables uniformly distributed on [−1, 1]. Then, for each A ⊂
[−1, 1]n, P (X ∈ A) is the fraction of the volume of the unit cube [−1, 1]n occupied by
A. (Notice that the volume of [−1, 1]n is 2n.)
Show that, as n→∞,

‖X‖2

n

P−→ 1

3
. (1)

(Recall that for x = (x1, . . . , x) ∈ Rn, ‖x‖2 =
∑n

i=1 x
2
i ).

For any ε ∈ (0, 1), let Aε,n =
{
x ∈ [−1, 1]n : (1− ε)

√
n/3 ≤ ‖x‖ ≤

√
n/3(1 + ε)

}
. Use

(1) to show that, for large n, almost all of the volume of [−1, 1]n lies in Aε,n.
This result should be very surprising: when ε is minuscule and n is large, it says that
most of the volume of [−1, 1]n concentrates around a very thin annulus. This seems
blatantly wrong (draw the picture for the case of n = 2): how can a uniform distri-
bution concentrate?!? In fact, this one of the most striking properties of probability
distributions in high-dimensions.

Points: 12 pts.

Solution.

Note that E[X2
i ] = 2−n

∫
[−1,1]n x

2
1dx = 1

2

∫ 1

−1 x
2
1dx1 = 1

3
.Hence by law of large

numbers,
‖X‖2

n
=

1

n

n∑
i=1

X2
i

P−→ 1

3
.

This implies that for any ε > 0,

P

(∣∣∣∣‖X‖2n
− 1

3

∣∣∣∣ ≤ ε

)
→ 1 as n→∞.

Then
∣∣∣‖x‖2n − 1

3

∣∣∣ ≤ ε if and only if (1−ε)
√
n/3 ≤ ‖x‖ ≤

√
n/3(1+ε), i.e. x ∈ Aε,n.

And hence
P (X ∈ Aε,n)→ 1 as n→∞.
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8. Weak Law of Large Numbers for certain correlated sequences. Let X1, X2, . . .
be a sequence of mean zero and unit variance random variables. Suppose that

Cov(Xi, Xj) = R(|i− j|),

for some function R over the non-negative integers (in particular R(0) = 1). Assume
that R(k) → 0 as k → ∞. This corresponds to the condition that the correlation
between two random variables in the sequence vanishes as the distance between their
indexes increases. Show that, as n→∞,

1

n

n∑
i=1

Xi
P−→ 0.

Points: 12 pts.

Solution.

Since E[Xi] = 0, E[XiXj] = Cov(Xi, Xj). Hence square integral of 1
n

∑n
i=1Xi can

be expanded as

E

( 1

n

n∑
i=1

Xi

)2
 =

1

n2

n∑
i,j=1

E[XiXj] =
1

n2

n∑
i,j=1

Cov(Xi, Xj) =
1

n2

n∑
i,j=1

R(|i− j|).

Then for each 1 ≤ k ≤ n − 1, there exists 2(n − k) pairs of (i, j) ∈ {1, . . . , n}2
such that |i− j| = k. Hence

E

( 1

n

n∑
i=1

Xi

)2
 =

1

n2

(
nR(0) +

n−1∑
k=1

2(n− k)R(k)

)
≤ 2

n

n−1∑
k=0

R(k).

Then from R(k)→ 0, for any ε > 0, we can choose K > 0 such that for all k ≥ K,
|R(k)| < ε

4
, and for all k, R(k) = Cov(Xi, Xj) ≤

√
V ar[Xi]V ar[Xj] = 1 as well.

Hence for any n ≥ 4K
ε

, 2
n

∑n−1
k=0 R(k) is bounded as

2

n

n−1∑
k=0

R(k) =
2

n

(
K−1∑
k=0

R(k) +
n−1∑
k=K

R(k)

)
≤ 2

n

(
K + (n−K)

ε

4

)
=
ε

2
+

2K(1− ε
4
)

n
< ε.

Hence 2
n

∑n−1
k=0 R(k)→ 0 as n→∞, and hence

1

n

n∑
i=1

Xi
L2→ 0.

And this implies 1
n

∑n
i=1Xi

P−→ 0 as well.
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