
36-752, Spring 2018
Homework 5

Due Monday, April 23, by 5:00pm in Jisu’s mailbox.

1. Recall the Skorohod’s representation theorem given in class (see Theorem 6.7 in the
book Weak Convergence in Metric Spaces, by P. Billingsley, Wiley Series in Probability
and Statistics, 1999, second edition).

Assume that {Xn} and X take values in a separable metric space and that Xn
D→ X.

Then, there exist random variables {Yn} and Y , defined on the same probability space,

such that Xn
d
= Yn for all n and X

d
= Y and Yn

a.s→ Y .

(a) Use Skorohod’s representation theorem to show that Xn
D→ X if and only if

limn E[g(Xn)] = E[g(X)] for all bounded functions g that are continuous almost
everywhere with respect to the distribution of X.

(b) Use the previous result to give a simple proof of the continuous mapping theorem.

2. Show by example that distribution functions having densities can converge weakly even
if the densities do not converge. Hint: Consider fn(x) = 1 + cos 2πnx on [0, 1].

3. Let Xn = (Xn(1), . . . , Xn(n)) be a random vector uniformly distributed over S√n =

{x ∈ Rn : ‖x‖ =
√
n}, the n-dimensional sphere of radius

√
n. Show that Xn(1)

D→
X, where X ∼ N(0, 1). You may use the fact that if the random vector Zn =
(Zn(1), . . . , Zn(n)) is comprised of independent standard normals, then the vector

Zn
√
n

‖Zn‖ is uniformly distributed over S√n (that is, Xn
d
= Zn

√
n

‖Zn‖).

4. Suppose that the distributions of random variables Xn and X (in (Rd,Bd)) have den-
sities fn and f . Show that if fn(x)→ f(x) for x outside a set of Lebesgue measure 0,

then Xn
D→ X. Hint: Use Scheffe’s theorem.

More, generally, show that convergence in total variation implies convergence in dis-
tribution. That is, show that, if {µn} and µ are probability measures on (X ,B) (here
X is a metric space and B the corresponding Borel σ-field), and if

dTV(µn, µ) = sup
A∈B
|µn(A)− µ(A)| → 0,

then µn
D→ µ.

5. Show that

ρ(F,G) = inf {ε > 0: F (x− ε)− ε ≤ G(x) ≤ F (x+ ε) + ε for all x}

defines a metric on the space of c.d.f.’s and that ρ(Fn, F )→ 0 if and only if Xn
D→ X,

where Xn has c.d.f. Fn for all n and X has c.d.f. F .
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6. Assume that P = {Pθ, θ ∈ Θ} is a parametric model over the sample space (X ,B),
such that Pθ << µ for all θ ∈ Θ, for some σ-finite dominating measure µ. Assume
also that all the Pθ’s have the same support and θ 6= θ′ implies that Pθ 6= Pθ′ . (You
may also assume that K(Pθ, Pθ′) <∞ for all θ 6= θ′, though this is not necessary.) Let

Xn = (X1, . . . , Xn)
i.i.d.∼ Pθ0 for some θ0 ∈ Θ and write

Ln(θ;Xn) =
n∏
i

pθ(Xi),

for the likelihood function at θ ∈ Θ, where pθ is the density of Pθ with respect to µ

Use the law of large numbers to show that, for any θ 6= θ0 in Θ,

lim
n→∞

P (Ln(Xn; θ0) > Ln(Xn; θ)) = 1

The previous result offers an asymptotic justification of why in this case the MLE is
a sensible choice. Hint: express the inequality in term of log-likelihood ratio and show
that the ratio converges in probability to K(Pθ0 , Pθ).

7. Two sequences {Xn} and {Yn} of random variables are asymptotically equivalent if
Xn − Yn = oP (1).

(a) Let X ′n = (Xn − E[Xn])/
√

Var[Xn] and Y ′n = (Yn − E[Yn])/
√

Var[Yn]. Show
that {X ′n} and {Y ′n} are asymptotically equivalent if Corr(Xn, Yn) → 1. Con-

clude that if (Xn − E[Xn])/
√

Var[Xn]
D→ X and Corr(Xn, Yn) → 1 then (Yn −

E[Yn])/
√

Var[Yn]
D→ X.

(b) Show that Corr(Xn, Yn)→ 1 if E(Xn−Yn)2
Var[Xn]

→ 0.

8. The Delta method with higher order expansions.

(a) Prove the following: let {Xn} and X be a sequence of random vectors and a
random vector in Rd and {rn} a sequence of positive numbers incraesing to ∞
such that rn(Xn−θ)

D→ X, for some θ ∈ Rd. Let f : Rd → R be twice differentiable
at θ ∈ Rd and with ∇f(θ) = 0. Show that

r2n(f(Xn)− f(θ)
D→ 1

2
X>Hf (θ)X,

where Hf (θ) is the Hessian of f at θ.

(b) Let X1, . . . , Xn
i.i.d.∼ Bernoulli(θ) and let θ̂n = 1

n

∑n
i=1Xi. We are interested in

estimating the variance of the distribution, θ(1 − θ). Let f : [0, 1] → [0, 1] be

given as f(x) = x(1 − x). Consider the estimator f(θ̂) = θ̂(1 − θ̂). Derive the

asymptotic distribution of f(θ̂), for all θ ∈ (0, 1). The limiting distribution will
be different depending on whether θ = 1/2 or not.
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9. Let {Xn} and X be a sequence of random vectors and a random vector in Rd, re-
spectively, and {rn} a sequence of positive numbers such that rn →∞. Suppose that

rn(Xn − θ)
D→ X, for some θ ∈ Rd. Show that Xn = θ + oP (1).

10. Records. Let Z1, Z2, . . . be i.i.d. continuous random variables. We say a record
occurs at k if Zk > maxi<k Zi. Let Rk = 1 if a record occurs at k, and let Rk = 0
otherwise. Then R1, R2, . . . are independent Bernoulli random variables with P(Rk =
1) = 1 − P(Rk = 0) = 1/k for k = 1, 2, . . .. Let Sn =

∑n
k=1Rk denote the number

of records in the first n observations. Find E[Sn] and Var[Sn], and show that (Sn −
E[Sn])/

√
Var[Sn]

D→ N(0, 1) (The distribution of Sn is also the distribution of the
number of cycles in a random permutation.)

11. Bonus problem. Written by Jisu. In Problem 3, we used the fact that if Z ∼
N(0, In) (multivariate norml with mean 0 and variance identity), then Z

‖Z‖2 is uniformly

distributed over Sn−1 := {x ∈ Rn : ‖x‖2 = 1}. Intuitive way of arguing this is
that both the distribution of Z

‖Z‖2 and the uniform distribution on Sn−1 are invariant
under rotations, and hence they should equal. We formaly argue in the following
subproblems. We let O(n) be the set of n × n orthogonal matrices, i.e. O(n) =
{A ∈ Rn×n : A>A = AA> = In}. For A ∈ Rn×n and E ⊂ Rn, we use the notation
AE := {Ax ∈ Rn : x ∈ E}. We also let µZ/‖Z‖ be the induced measure on (S,BS)

defined as µZ/‖Z‖2(E) = P
(

Z
‖Z‖2 ∈ E

)
for all E ∈ BSn−1 , where BSn−1 is a Borel set of

Sn−1.
We first need to define the uniform distribution on Sn−1. It is indeed the n − 1-
dimensional Hausdorff measure. For any subset U ⊂ Rn, let diam(U) denote its
diameter, i.e. diam(U) = sup{‖x− y‖2 : x, y ∈ U}. Then for any E ⊂ Rn and for any
d, δ > 0, define

Hd
δ (E) = inf

{
∞∑
i=1

(diam(Ui))
d : E ⊂

∞⋃
i=1

Ui, diam(Ui) < δ

}
,

and let Hd(E) = limδ→0H
d
δ (E) be the d-dimensional Hausdorff measure. Then the

uniform distribution λSn−1 on Sn−1 is defined as λSn−1(E) = Hn−1(E)
Hn−1(Sn−1)

for all E ∈ BSn−1 .

For S ⊂ Rn and G ⊂ Rn×n, we call that G acts on S if for all A ∈ O(n), AS ⊂ S.
Also, we further say that G acts transitively on S if G acts on S and for any x, y ∈ S,
there exists A ∈ G such that Ax = y.

(a) Show that O(n) acts transitively on Sn−1.

Let BS be the Borel set of S and let µ be a finite measure on (S,BS), i.e. µ(S) <∞.
We call that µ is a Haar measure on (G,S) if µ is a nonzero and µ(AE) = µ(E) for all
Borel set E ∈ BS and A ∈ G.
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(b) Show that µZ/‖Z‖2 is a Haar measure on (O(n),Sn−1). You can omit the part that
AE ∈ BSn−1 for E ∈ BSn−1 (which should be a repetition of Homework 2 Problem
9).

(c) Show that λSn−1 is a Haar measure on (O(n),Sn−1). You can assume that 0 <
Hn−1(Sn) <∞.

It is known that Haar measure is unique up to constant, i.e. if both µ and ν are Haar
measures on (G,S), then µ = ξν for some ξ > 0 (For reference, see Exercise 11.(i) in
http://terrytao.wordpress.com/2011/09/27/254a-notes-3-haar-measure-and-the-peter-weyl-theorem/

In our case, we have shown that both µZ/‖Z‖2 and λSn−1 are Haar measures on (O(n),Sn−1).
Since both µZ/‖Z‖2 and λSn−1 are probability measures, µZ/‖Z‖2 = λSn−1 should hold.
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