36-752, Spring 2018 Homework 5

Due Monday, April 23, by 5:00pm in Jisu's mailbox.

1. Recall the Skorohod's representation theorem given in class (see Theorem 6.7 in the book *Weak Convergence in Metric Spaces*, by P. Billingsley, Wiley Series in Probability and Statistics, 1999, second edition).

Assume that $\{X_n\}$ and X take values in a separable metric space and that $X_n \xrightarrow{D} X$. Then, there exist random variables $\{Y_n\}$ and Y, defined on the same probability space, such that $X_n \stackrel{d}{=} Y_n$ for all n and $X \stackrel{d}{=} Y$ and $Y_n \stackrel{a.s}{\to} Y$.

- (a) Use Skorohod's representation theorem to show that $X_n \xrightarrow{D} X$ if and only if $\lim_n \mathbb{E}[g(X_n)] = \mathbb{E}[g(X)]$ for all bounded functions g that are continuous almost everywhere with respect to the distribution of X.
- (b) Use the previous result to give a simple proof of the continuous mapping theorem.
- 2. Show by example that distribution functions having densities can converge weakly even if the densities do not converge. *Hint: Consider* $f_n(x) = 1 + \cos 2\pi nx$ on [0, 1].
- 3. Let $X_n = (X_n(1), \ldots, X_n(n))$ be a random vector uniformly distributed over $S_{\sqrt{n}} = \{x \in \mathbb{R}^n : ||x|| = \sqrt{n}\}$, the *n*-dimensional sphere of radius \sqrt{n} . Show that $X_n(1) \xrightarrow{D} X$, where $X \sim N(0, 1)$. You may use the fact that if the random vector $Z_n = (Z_n(1), \ldots, Z_n(n))$ is comprised of independent standard normals, then the vector $Z_n \frac{\sqrt{n}}{\|Z_n\|}$ is uniformly distributed over $S_{\sqrt{n}}$ (that is, $X_n \stackrel{d}{=} Z_n \frac{\sqrt{n}}{\|Z_n\|}$).
- 4. Suppose that the distributions of random variables X_n and X (in $(\mathbb{R}^d, \mathcal{B}^d)$) have densities f_n and f. Show that if $f_n(x) \to f(x)$ for x outside a set of Lebesgue measure 0, then $X_n \xrightarrow{D} X$. *Hint: Use Scheffe's theorem.*

More, generally, show that convergence in total variation implies convergence in distribution. That is, show that, if $\{\mu_n\}$ and μ are probability measures on $(\mathcal{X}, \mathcal{B})$ (here \mathcal{X} is a metric space and \mathcal{B} the corresponding Borel σ -field), and if

$$d_{\mathrm{TV}}(\mu_n, \mu) = \sup_{A \in \mathbb{B}} |\mu_n(A) - \mu(A)| \to 0,$$

then $\mu_n \xrightarrow{D} \mu$.

5. Show that

$$\rho(F,G) = \inf \left\{ \epsilon > 0 \colon F(x-\epsilon) - \epsilon \le G(x) \le F(x+\epsilon) + \epsilon \text{ for all } x \right\}$$

defines a metric on the space of c.d.f.'s and that $\rho(F_n, F) \to 0$ if and only if $X_n \xrightarrow{D} X$, where X_n has c.d.f. F_n for all n and X has c.d.f. F. 6. Assume that $\mathcal{P} = \{P_{\theta}, \theta \in \Theta\}$ is a parametric model over the sample space $(\mathcal{X}, \mathcal{B})$, such that $P_{\theta} << \mu$ for all $\theta \in \Theta$, for some σ -finite dominating measure μ . Assume also that all the P_{θ} 's have the same support and $\theta \neq \theta'$ implies that $P_{\theta} \neq P_{\theta'}$. (You may also assume that $K(P_{\theta}, P_{\theta'}) < \infty$ for all $\theta \neq \theta'$, though this is not necessary.) Let $\mathbb{X}_n = (X_1, \ldots, X_n) \stackrel{i.i.d.}{\sim} P_{\theta_0}$ for some $\theta_0 \in \Theta$ and write

$$L_n(\theta; \mathbb{X}_n) = \prod_i^n p_\theta(X_i),$$

for the likelihood function at $\theta \in \Theta$, where p_{θ} is the density of P_{θ} with respect to μ Use the law of large numbers to show that, for any $\theta \neq \theta_0$ in Θ ,

$$\lim_{n \to \infty} \mathbb{P}\left(L_n(\mathbb{X}_n; \theta_0) > L_n(\mathbb{X}_n; \theta)\right) = 1$$

The previous result offers an asymptotic justification of why in this case the MLE is a sensible choice. *Hint: express the inequality in term of log-likelihood ratio and show* that the ratio converges in probability to $K(P_{\theta_0}, P_{\theta})$.

- 7. Two sequences $\{X_n\}$ and $\{Y_n\}$ of random variables are asymptotically equivalent if $X_n Y_n = o_P(1)$.
 - (a) Let $X'_n = (X_n \mathbb{E}[X_n])/\sqrt{\operatorname{Var}[X_n]}$ and $Y'_n = (Y_n \mathbb{E}[Y_n])/\sqrt{\operatorname{Var}[Y_n]}$. Show that $\{X'_n\}$ and $\{Y'_n\}$ are asymptotically equivalent if $\operatorname{Corr}(X_n, Y_n) \to 1$. Conclude that if $(X_n - \mathbb{E}[X_n])/\sqrt{\operatorname{Var}[X_n]} \xrightarrow{D} X$ and $\operatorname{Corr}(X_n, Y_n) \to 1$ then $(Y_n - \mathbb{E}[Y_n])/\sqrt{\operatorname{Var}[Y_n]} \xrightarrow{D} X$.

(b) Show that
$$\operatorname{Corr}(X_n, Y_n) \to 1$$
 if $\frac{\mathbb{E}(X_n - Y_n)^2}{\operatorname{Var}[X_n]} \to 0$.

8. The Delta method with higher order expansions.

(a) Prove the following: let $\{X_n\}$ and X be a sequence of random vectors and a random vector in \mathbb{R}^d and $\{r_n\}$ a sequence of positive numbers increasing to ∞ such that $r_n(X_n - \theta) \xrightarrow{D} X$, for some $\theta \in \mathbb{R}^d$. Let $f : \mathbb{R}^d \to \mathbb{R}$ be twice differentiable at $\theta \in \mathbb{R}^d$ and with $\nabla f(\theta) = 0$. Show that

$$r_n^2(f(X_n) - f(\theta) \xrightarrow{D} \frac{1}{2} X^\top H_f(\theta) X,$$

where $H_f(\theta)$ is the Hessian of f at θ .

(b) Let $X_1, \ldots, X_n \stackrel{i.i.d.}{\sim}$ Bernoulli (θ) and let $\widehat{\theta}_n = \frac{1}{n} \sum_{i=1}^n X_i$. We are interested in estimating the variance of the distribution, $\theta(1-\theta)$. Let $f: [0,1] \to [0,1]$ be given as f(x) = x(1-x). Consider the estimator $f(\widehat{\theta}) = \widehat{\theta}(1-\widehat{\theta})$. Derive the asymptotic distribution of $f(\widehat{\theta})$, for all $\theta \in (0,1)$. The limiting distribution will be different depending on whether $\theta = 1/2$ or not.

- 9. Let $\{X_n\}$ and X be a sequence of random vectors and a random vector in \mathbb{R}^d , respectively, and $\{r_n\}$ a sequence of positive numbers such that $r_n \to \infty$. Suppose that $r_n(X_n \theta) \xrightarrow{D} X$, for some $\theta \in \mathbb{R}^d$. Show that $X_n = \theta + o_P(1)$.
- 10. **Records.** Let Z_1, Z_2, \ldots be i.i.d. continuous random variables. We say a record occurs at k if $Z_k > \max_{i < k} Z_i$. Let $R_k = 1$ if a record occurs at k, and let $R_k = 0$ otherwise. Then R_1, R_2, \ldots are independent Bernoulli random variables with $\mathbb{P}(R_k = 1) = 1 \mathbb{P}(R_k = 0) = 1/k$ for $k = 1, 2, \ldots$. Let $S_n = \sum_{k=1}^n R_k$ denote the number of records in the first n observations. Find $\mathbb{E}[S_n]$ and $\operatorname{Var}[S_n]$, and show that $(S_n \mathbb{E}[S_n])/\sqrt{\operatorname{Var}[S_n]} \xrightarrow{D} N(0, 1)$ (The distribution of S_n is also the distribution of the number of cycles in a random permutation.)
- 11. Bonus problem. Written by Jisu. In Problem 3, we used the fact that if $Z \sim N(0, I_n)$ (multivariate norml with mean 0 and variance identity), then $\frac{Z}{\|Z\|_2}$ is uniformly distributed over $\mathbb{S}^{n-1} := \{x \in \mathbb{R}^n : \|x\|_2 = 1\}$. Intuitive way of arguing this is that both the distribution of $\frac{Z}{\|Z\|_2}$ and the uniform distribution on \mathbb{S}^{n-1} are invariant under rotations, and hence they should equal. We formally argue in the following subproblems. We let O(n) be the set of $n \times n$ orthogonal matrices, i.e. $O(n) = \{A \in \mathbb{R}^{n \times n} : A^\top A = AA^\top = I_n\}$. For $A \in \mathbb{R}^{n \times n}$ and $E \subset \mathbb{R}^n$, we use the notation $AE := \{Ax \in \mathbb{R}^n : x \in E\}$. We also let $\mu_{Z/\|Z\|}$ be the induced measure on (S, \mathcal{B}_S) defined as $\mu_{Z/\|Z\|_2}(E) = P\left(\frac{Z}{\|Z\|_2} \in E\right)$ for all $E \in \mathcal{B}_{\mathbb{S}^{n-1}}$, where $\mathcal{B}_{\mathbb{S}^{n-1}}$ is a Borel set of \mathbb{S}^{n-1} .

We first need to define the uniform distribution on \mathbb{S}^{n-1} . It is indeed the n-1dimensional Hausdorff measure. For any subset $U \subset \mathbb{R}^n$, let diam(U) denote its diameter, i.e. $diam(U) = \sup\{||x-y||_2 : x, y \in U\}$. Then for any $E \subset \mathbb{R}^n$ and for any $d, \delta > 0$, define

$$H^d_{\delta}(E) = \inf\left\{\sum_{i=1}^{\infty} (diam(U_i))^d : E \subset \bigcup_{i=1}^{\infty} U_i, \, diam(U_i) < \delta\right\},\$$

and let $H^d(E) = \lim_{\delta \to 0} H^d_{\delta}(E)$ be the *d*-dimensional Hausdorff measure. Then the uniform distribution $\lambda_{\mathbb{S}^{n-1}}$ on \mathbb{S}^{n-1} is defined as $\lambda_{\mathbb{S}^{n-1}}(E) = \frac{H^{n-1}(E)}{H^{n-1}(\mathbb{S}^{n-1})}$ for all $E \in \mathcal{B}_{\mathbb{S}^{n-1}}$. For $S \subset \mathbb{R}^n$ and $G \subset \mathbb{R}^{n \times n}$, we call that G acts on S if for all $A \in O(n)$, $AS \subset S$. Also, we further say that G acts transitively on S if G acts on S and for any $x, y \in S$, there exists $A \in G$ such that Ax = y.

(a) Show that O(n) acts transitively on \mathbb{S}^{n-1} .

Let \mathcal{B}_S be the Borel set of S and let μ be a finite measure on (S, \mathcal{B}_S) , i.e. $\mu(S) < \infty$. We call that μ is a Haar measure on (G, S) if μ is a nonzero and $\mu(AE) = \mu(E)$ for all Borel set $E \in \mathcal{B}_S$ and $A \in G$.

- (b) Show that $\mu_{Z/\|Z\|_2}$ is a Haar measure on $(O(n), \mathbb{S}^{n-1})$. You can omit the part that $AE \in \mathcal{B}_{\mathbb{S}^{n-1}}$ for $E \in \mathcal{B}_{\mathbb{S}^{n-1}}$ (which should be a repetition of Homework 2 Problem 9).
- (c) Show that $\lambda_{\mathbb{S}^{n-1}}$ is a Haar measure on $(O(n), \mathbb{S}^{n-1})$. You can assume that $0 < H^{n-1}(\mathbb{S}^n) < \infty$.

It is known that Haar measure is unique up to constant, i.e. if both μ and ν are Haar measures on (G, S), then $\mu = \xi \nu$ for some $\xi > 0$ (For reference, see Exercise 11.(i) in http://terrytao.wordpress.com/2011/09/27/254a-notes-3-haar-measure-and-the-peter-we In our case, we have shown that both $\mu_{Z/\|Z\|_2}$ and $\lambda_{\mathbb{S}^{n-1}}$ are Haar measures on $(O(n), \mathbb{S}^{n-1})$. Since both $\mu_{Z/\|Z\|_2}$ and $\lambda_{\mathbb{S}^{n-1}}$ are probability measures, $\mu_{Z/\|Z\|_2} = \lambda_{\mathbb{S}^{n-1}}$ should hold.