
36-752, Spring 2018
Homework 5 Solution

Due Monday, April 23, by 5:00pm in Jisu’s mailbox.

Points: 100+10 pts total for the assignment.

1. Recall the Skorohod’s representation theorem given in class (see Theorem 6.7 in the
book Weak Convergence in Metric Spaces, by P. Billingsley, Wiley Series in Probability
and Statistics, 1999, second edition).

Assume that {Xn} and X take values in a separable metric space and that Xn
D→ X.

Then, there exist random variables {Yn} and Y , defined on the same probability space,

such that Xn
d
= Yn for all n and X

d
= Y and Yn

a.s→ Y .

(a) Use Skorohod’s representation theorem to show that Xn
D→ X if and only if

limn E[g(Xn)] = E[g(X)] for all bounded functions g that are continuous almost
everywhere with respect to the distribution of X.

(b) Use the previous result to give a simple proof of the continuous mapping theorem.

Points: 12 pts = 7 + 5.

Solution.

(a)

(=⇒) Since Xn
D→ X, there exists random variables Yn and Y such that Xn

d
= Yn

for all n, X
d
= Y , and Yn → Y a.s.. Also, let Cg := {x : g is continuous at x},

then P (Y ∈ Cg) = 1. Then for all ω ∈ {Yn(ω) → Y (ω)} ∩ {Y (ω) ∈ G},
g(Yn(ω))→ g(Y (ω)) as well. And hence

P (g(Yn(ω))→ g(Y (ω))) ≥ P ({Yn(ω)→ Y (ω)} ∩ {Y (ω) ∈ Cg})
= 1− P ({Yn(ω) 9 Y (ω)} ∪ {Y (ω) /∈ Cg})
≥ 1− P (Yn(ω) 9 Y (ω)) + P (Y (ω) /∈ Cg)
= 1.

Hence g(Yn) → g(Y ) a.s. as well. Then since g is bounded, by dominated con-
vergence theorem (or bounded convergence theorem),

lim
n→∞

E[g(Yn)] = E[g(Y )].

(⇐=) From condition, limn E[f(Xn)] = E[f(X)] for all bounded continuous func-

tion f . Hence Xn
D→ X by definition.

(b)
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Suppose random variables {Xn}n∈N, X, and a function g satisfy Xn
D→ X and

P (X ∈ Cg) = 1, where Cg := {x : g is continuous at x}. Then for any bounded
continuous function f and x ∈ Cg, for all ε > 0, there exists ε′ > 0 with ‖g(x)−
z‖ < ε′ implying ‖f(g(x))−f(z)‖ < ε. Then from x ∈ Cg, there exists δ > 0 with
‖x− y‖ < δ implying ‖g(x)− g(y)‖ < ε′. Then ‖f(g(x))− f(g(y))‖ < ε as well,
so f ◦ g is continuous at x, i.e.

x ∈ Cf◦g.

Also, since f ◦ g is bounded, hence from (a), limn→∞ E[f(g(Yn))] = E[f(g(Y ))].
Since this holds for any bounded continuous function f ,

g(Yn)
P→ g(Y ).

2. Show by example that distribution functions having densities can converge weakly even
if the densities do not converge. Hint: Consider fn(x) = 1 + cos 2πnx on [0, 1].

Points: 8 pts.

Solution.

Consider measures on ([0, 1],B([0, 1])) having densities fn(x) = 1 + cos 2πnx on
[0, 1]. Then corresponding distribution functions are for each n ∈ N,

Fn(x) =

∫ x

0

fn(x)dx = x+
1

2πn
sin 2πnx.

Then for all x ∈ [0, 1], Fn(x) = x+ 1
2πn

sin 2πnx→ x, so

Fn
D→ F with F (x) =


0, x ≤ 0,

x −1 ≤ x < 1,

1, x ≥ 1.

However, fn(x) = 1 + cos 2πnx does not converge for any x ∈ [0, 1].

3. Let Xn = (Xn(1), . . . , Xn(n)) be a random vector uniformly distributed over S√n =

{x ∈ Rn : ‖x‖ =
√
n}, the n-dimensional sphere of radius

√
n. Show that Xn(1)

D→
X, where X ∼ N(0, 1). You may use the fact that if the random vector Zn =
(Zn(1), . . . , Zn(n)) is comprised of independent standard normals, then the vector

Zn
√
n

‖Zn‖ is uniformly distributed over S√n (that is, Xn
d
= Zn

√
n

‖Zn‖).

Points: 8 pts.
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Solution.

Let Zn ∼ N(0, In), then Zn
√
n

‖Zn‖ is uniformly distributed over S√n from Problem
11. Hence,

Xn(1)
d
=

√
nZn(1)

‖Zn‖
=

Zn(1)√
1
n

∑n
k=1 Zn(k)2

.

Then since E[Zn(k)2] = 1, from weak law of large numbers, 1
n

∑n
k=1 Zn(k)2

P→ 1.

And Zn(1)
d
= X with X ∼ N(0, 1), hence from Slutsky Theorem,

Xn(1)
D→ X√

1
= X.

4. Suppose that the distributions of random variables Xn and X (in (Rd,Bd)) have den-
sities fn and f . Show that if fn(x)→ f(x) for x outside a set of Lebesgue measure 0,

then Xn
D→ X. Hint: Use Scheffe’s theorem.

More, generally, show that convergence in total variation implies convergence in dis-
tribution. That is, show that, if {µn} and µ are probability measures on (X ,B) (here
X is a metric space and B the corresponding Borel σ-field), and if

dTV(µn, µ) = sup
A∈B
|µn(A)− µ(A)| → 0,

then µn
D→ µ.

Points: 12 pts.

Solution.

Let λ be the Lebesgue measure on (Rd,Bd). Since fn → f a.e. and
∫
|fn|dλ =∫

|f |dλ = 1, Scheffé’s theorem implies that
∫
|fn − f |dλ → 0 as n → ∞. Then

for any bounded countinuous function g,

|E[g(Xn)]− E[g(X)]| =
∣∣∣∣∫ g(x)fn(x)dλ−

∫
g(x)f(x)dλ

∣∣∣∣
≤
∫
g(x)|fn(x)− f(x)|dλ

≤ sup
x∈X
|g(x)|

∫
|fn(x)− f(x)|dλ→ 0 as n→∞,

And hence E[g(Xn)] → E[g(X)] as n → ∞ for any bounded continuous g, i.e.

Xn
D→ X holds.

More generally, note that dTV(µn, µ)→ 0 implies that for allA ∈ B, limn→∞ µn(A) =
µ(A). Then from Portmanteau theorem, limn→∞ E[f(Xn)] = E[f(X)] holds. And

hence Xn
D→ X holds.
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5. Show that

ρ(F,G) = inf {ε > 0: F (x− ε)− ε ≤ G(x) ≤ F (x+ ε) + ε for all x}

defines a metric on the space of c.d.f.’s and that ρ(Fn, F )→ 0 if and only if Xn
D→ X,

where Xn has c.d.f. Fn for all n and X has c.d.f. F .

Points: 12 pts.

Solution.

We first check wheather ρ(F,G) is a metric. Note that if F (x− ε)− ε ≤ G(x) ≤
F (x + ε) + ε holds for all x, then G(x − ε) ≤ F ((x − ε) + ε) + ε = F (x) + ε and
F (x)−ε = F ((x+ε)−ε)−ε ≤ G(x+ε), and hence G(x−ε)−ε ≤ F (x) ≤ G(x+ε)+ε
holds for all x, and hence ρ(F,G) = ρ(G,F ) holds. Also from definition, ρ(F,G) ≥
0. And ρ(F,G) = 0 implies that for all x, F (x) ≤ infε>0{G(x+ε)+ε} = G(x) and
correspondingly ρ(G,F ) = 0 implies G(x) ≤ infε>0{F (x + ε) + ε} = F (x) holds,
and hence F = G holds. And F = G trivially implies ρ(F,G) = 0, so ρ(F,G) = 0
if and only if F = G. Also, for F , G, H, for any ε > 0, and for any x ∈ R,

H(x) ≥ G(x− ρ(G,H)− ε)− ρ(G,H)− ε
≥ F (x− ρ(F,G)− ρ(G,H)− 2ε)− ρ(F,G)− ρ(G,H)− 2ε,

H(x) ≤ G(x+ ρ(G,H) + ε) + ρ(G,H) + ε

≤ F (x+ ρ(F,G) + ρ(G,H) + 2ε) + ρ(F,G) + ρ(G,H) + 2ε.

Hence ρ(F,H) ≤ ρ(F,G) + ρ(G,H) + 2ε for any ε > 0, and hence ρ(F,G) ≤
ρ(F,G) + ρ(G,H). Hence ρ defines a metric on the space of c.d.f.’s.

Next, we show ρ(Fn, F )→ 0 ⇐⇒ Xn
D→ X.

(=⇒) For any continuous point x of F , let εn := 2ρ(Fn, F ) and then F (x− εn)−
εn ≤ Fn(x) ≤ F (x+ εn) + εn. Then ρ(Fn, F )→ 0 implies that

F (x) = lim
n→∞

(F (x− εn)− εn) ≤ lim
n→∞

Fn(x) ≤ lim
n→∞

(F (x+ εn) + εn) = F (x),

i.e. limn→∞ Fn(x) = F (x). And hence Xn
D→ X from Portmanteau theorem.

(⇐=) Fix ε > 0, and choose x1 < · · · < xk be such that F (x1) ≤ ε
2
, F (xk) ≥ 1− ε

2
,

|xi+1 − xi| ≤ ε, and all xi’s are continuous point of F . Choose N large enough so
that for all n ≥ N and for any i = 1, . . . , k, |Fn(xi)− F (xi)| ≤ ε

2
holds.

Now, for any x ∈ [x1, xk], there exists some i ∈ [1, k − 1] such that x ∈ [xi, xi+1].
Then

F (x) ≥ F (xi) ≥ Fn(xi)−
ε

2
> Fn(x− ε)− ε,

F (x) ≤ F (xi+1) ≤ Fn(xi+1) +
ε

2
< Fn(x+ ε) + ε.
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And hence Fn(x− ε)− ε ≤ F (x) ≤ Fn(x+ ε) + ε holds.

For any x < x1, note that Fn(x1) ≤ F (x1)+ |Fn(x1)−F (x1)| ≤ ε holds, and hence

F (x) ≥ 0 ≥ Fn(x1)− ε ≥ Fn(x− ε)− ε,

F (x) ≤ F (x1) ≤
ε

2
< Fn(x+ ε) + ε.

And hence Fn(x− ε)− ε ≤ F (x) ≤ Fn(x+ ε) + ε holds.

For any x > xk, note that Fn(xk) ≥ F (xk)− |Fn(xk)− F (xk)| ≥ 1− ε holds, and
hence

F (x) ≥ F (xk) ≥ 1− ε

2
> Fn(x− ε)− ε,

F (x) ≤ 1 ≤ Fn(xk) + ε ≤ Fn(x+ ε) + ε.

And hence Fn(x− ε)− ε ≤ F (x) ≤ Fn(x+ ε) + ε holds.

Hence in any case, Fn(x − ε) − ε ≤ F (x) ≤ Fn(x + ε) + ε holds, so ρ(Fn, F ) ≤ ε
for n ≥ N . Therefore, ρ(Fn, F )→ 0 as n→∞.

6. Assume that P = {Pθ, θ ∈ Θ} is a parametric model over the sample space (X ,B),
such that Pθ << µ for all θ ∈ Θ, for some σ-finite dominating measure µ. Assume
also that all the Pθ’s have the same support and θ 6= θ′ implies that Pθ 6= Pθ′ . (You
may also assume that K(Pθ, Pθ′) <∞ for all θ 6= θ′, though this is not necessary.) Let

Xn = (X1, . . . , Xn)
i.i.d.∼ Pθ0 for some θ0 ∈ Θ and write

Ln(θ;Xn) =
n∏
i

pθ(Xi),

for the likelihood function at θ ∈ Θ, where pθ is the density of Pθ with respect to µ

Use the law of large numbers to show that, for any θ 6= θ0 in Θ,

lim
n→∞

P (Ln(Xn; θ0) > Ln(Xn; θ)) = 1

The previous result offers an asymptotic justification of why in this case the MLE is
a sensible choice. Hint: express the inequality in term of log-likelihood ratio and show
that the ratio converges in probability to K(Pθ0 , Pθ).

Points: 8 pts.

Solution.
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Note that condition Ln(Xn; θ0) > Ln(Xn; θ) can be equivalently written as

Ln(Xn; θ0) > Ln(Xn; θ) ⇐⇒ logLn(Xn; θ0) > logLn(Xn; θ)

⇐⇒
n∑
i=1

log pθ0(Xi) >
n∑
i=1

log pθ(Xi)

⇐⇒ 1

n

n∑
i=1

log
pθ0(Xi)

pθ(Xi)
> 0

⇐⇒ 1

n

n∑
i=1

Yi > 0,

where Yi = log
pθ0 (Xi)

pθ(Xi)
for i = 1, · · · , n. Then since all Pθ has same support,

Pθ0 � Pθ holds, so expectation of Yi under Pθ0 can be computed as

Eθ0 [Yi] = Eθ0
[
log

pθ0(Xi)

pθ(Xi)

]
= K(Pθ0 , Pθ) ∈ (0,∞).

Hence by weak law of large number,

1

n

n∑
i=1

Yi
P→ K(Pθ0 , Pθ) > 0,

and hence 1
n

n∑
i=1

Yi
D→ K(Pθ0 , Pθ) as well. since 0 is a continuous point of the cdf of

constant random variable K(Pθ0 , Pθ), so

lim
n→∞

P

(
1

n

n∑
i=1

Yi > 0

)
= lim

n→∞
P (K(Pθ0 , Pθ) > 0) = 1.

7. Two sequences {Xn} and {Yn} of random variables are asymptotically equivalent if
Xn − Yn = oP (1).

(a) Let X ′n = (Xn − E[Xn])/
√

Var[Xn] and Y ′n = (Yn − E[Yn])/
√

Var[Yn]. Show
that {X ′n} and {Y ′n} are asymptotically equivalent if Corr(Xn, Yn) → 1. Con-

clude that if (Xn − E[Xn])/
√

Var[Xn]
D→ X and Corr(Xn, Yn) → 1 then (Yn −

E[Yn])/
√

Var[Yn]
D→ X.

(b) Show that Corr(Xn, Yn)→ 1 if E(Xn−Yn)2
Var[Xn]

→ 0.

Points: 12 pts = 5 + 7.
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Solution.

(a)

From definition, E[X ′2n ] = E[Y ′2n ] = 1 and E[X ′nY
′
n] = Corr(Xn, Yn) holds. Hence

the L2 difference of X ′n and Y ′n can be bounded as

E
[
(X ′n − Y ′n)2

]
= E[X ′2n ] + E[Y ′2n ]− 2E[X ′nY

′
n]

= 2(1− Corr(Xn, Yn))→ 0 as n→∞.

And hence X ′n − Y ′n → 0 in L2, which implies X ′n − Y ′n
P→ 0. Then by applying

Slutsky’s theorem,

Yn − E[Yn]√
V ar[Yn]

= Y ′n = X ′n − (X ′n − Y ′n)
P→ X − 0 = X.

(b)

Since V ar[Xn − Yn] ≤ E(Xn − Yn)2, E(Xn−Yn)2
Var[Xn]

→ 0 implies an := V ar[Xn−Yn]
Var[Xn]

→ 0
as well. Then an can be expanded as

an =
V ar[Xn] + V ar[Yn]− 2Cov(Xn, Yn)

Var[Xn]

=

√
V ar[Yn]

V ar[Xn]

(√
V ar[Xn]

V ar[Yn]
+

√
V ar[Yn]

V ar[Xn]
− 2Corr(Xn, Yn)

)
.

Hence rearranging term gives

Corr(Xn, Yn) =
1

2
(1 + an)

√
V ar[Xn]

V ar[Yn]
+

1

2

√
V ar[Yn]

V ar[Xn]
.

Then, further applying AM-GM inequality gives

Corr(Xn, Yn) ≥ 1

2
(1− |an|)

(√
V ar[Xn]

V ar[Yn]
+

√
V ar[Yn]

V ar[Xn]

)
≥ 1

2
(1− |an|)× 2 = 1− |an|,

and hence
1− |an| ≤ Corr(Xn, Yn) ≤ 1.

Then from an → 0 as n→∞, Corr(Xn, Yn)→ 1 as n→∞.

8. The Delta method with higher order expansions.
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(a) Prove the following: let {Xn} and X be a sequence of random vectors and a
random vector in Rd and {rn} a sequence of positive numbers incraesing to ∞
such that rn(Xn−θ)

D→ X, for some θ ∈ Rd. Let f : Rd → R be twice differentiable
at θ ∈ Rd and with ∇f(θ) = 0. Show that

r2n(f(Xn)− f(θ)
D→ 1

2
X>Hf (θ)X,

where Hf (θ) is the Hessian of f at θ.

(b) Let X1, . . . , Xn
i.i.d.∼ Bernoulli(θ) and let θ̂n = 1

n

∑n
i=1Xi. We are interested in

estimating the variance of the distribution, θ(1 − θ). Let f : [0, 1] → [0, 1] be

given as f(x) = x(1 − x). Consider the estimator f(θ̂) = θ̂(1 − θ̂). Derive the

asymptotic distribution of f(θ̂), for all θ ∈ (0, 1). The limiting distribution will
be different depending on whether θ = 1/2 or not.

Points: 12 pts = 7 + 5.

Solution.

(a)

From f being twice differentiable at θ, f(Xn) can be Taylor expanded at θ as

f(Xn) = f(θ) +∇f(θ)>(Xn − θ) +
1

2
(Xn − θ)>Hf (θ)(Xn − θ) +R(Xn − θ),

where R satisfies limh→0
R(h)

‖h‖22
= 0. Hence from ∇f(θ) = 0,

r2n(f(Xn)−f(θ)) =
1

2
(rn(Xn−θ))>Hf (θ)(fn(Xn−θ))+‖rn(Xn−θ)‖22

R(‖Xn − θ‖)
‖Xn − θ‖22

.

Then applying continuous mapping theorem on rn(Xn − θ)
D→ X imply that

(rn(Xn − θ))>Hf (θ)(fn(Xn − θ))
D→ 1

2
(rn(Xn − θ))>Hf (θ)(fn(Xn − θ)),

‖rn(Xn − θ)‖22
D→ ‖X‖22.

Now we consider the remainder term R(‖Xn−θ‖)
‖Xn−θ‖22

. For ε > 0, there exists δ > 0 such

that ‖h‖ ≤ δ implies |R(h)|
‖h‖22

≤ ε. Hence ‖Xn − θ‖ ≤ δ implies |R(‖Xn−θ‖)|
‖Xn−θ‖22

≤ ε, i.e.

P

(
|R(‖Xn − θ‖)|
‖Xn − θ‖22

> ε

)
≤ P (‖Xn − θ‖ > δ) .
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Also, note that from Slutsky theorem, Xn − θ = 1
rn

(rn(Xn − θ))
D→ 0 × X = 0,

and hence Xn − θ
P→ 0. Hence, P (‖Xn − θ‖ > δ)→ 0 as n→∞, which implies

P

(
|R(‖Xn − θ‖)|
‖Xn − θ‖22

> ε

)
→ 0 as n→∞,

i.e. R(‖Xn−θ‖)
‖Xn−θ‖22

P→ 0. Then from Slutsky theorem,

‖rn(Xn−θ)‖22
R(‖Xn − θ‖)
‖Xn − θ‖22

D→ ‖X‖22×0 = 0, and hence ‖rn(Xn−θ)‖22
R(‖Xn − θ‖)
‖Xn − θ‖22

P→ 0.

And then again from Slutsky theorem,

r2n(f(Xn)− f(θ)) =
1

2
(rn(Xn − θ))>Hf (θ)(fn(Xn − θ)) + ‖rn(Xn − θ)‖22

R(‖Xn − θ‖)
‖Xn − θ‖22

D→ 1

2
X>Hf (θ)X + 0 =

1

2
X>Hf (θ)X.

(b)

Since E[Xi] = θ and V ar[Xi] = θ(1 − θ), we have the asymptotic normality of θ̂
as

√
n(θ̂ − θ) =

√
n(

1

n

n∑
i=1

Xi − E[Xi])
D→ N(0, V ar[Xi]) = N(0, θ(1− θ)).

Note that f ′(x) = 1− 2x and f ′′(x) = −2.

When θ 6= 1
2
, f ′(θ) 6= 0. Hence from the usual delta method, we have the asymp-

totic distribution of f(θ̂) as

√
n(f(θ̂)− f(θ))

D→ N(0, f ′(θ)2θ(1− θ)) = N(0, θ(1− θ)(1− 2θ)2).

When θ = 1
2
, f ′(θ) = 0 and f ′′(θ) = −2, and hence from (a), we have the

asymptotic normality of θ̂ as

n(f(θ̂)− f(θ))
D→ 1

2
f ′′(θ)(N(0, θ(1− θ)))2 d

= −1

4
χ2
1,

where χ2
1 is the chi-square distribution with degree of freedom 1.

Remark.

In (a), the Taylor remainder term R(Xn − θ) = oP (‖Xn − θ‖22) when ‖Xn −
θ‖2 = oP (1), but otherwise not necessarily. For example, let Xn = X be some
nonconstant random variable, and f(x) = x3 with θ = 0. Then the remainder
term R(Xn − θ) = X3is not oP (|X|2).
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9. Let {Xn} and X be a sequence of random vectors and a random vector in Rd, re-
spectively, and {rn} a sequence of positive numbers such that rn →∞. Suppose that

rn(Xn − θ)
D→ X, for some θ ∈ Rd. Show that Xn = θ + oP (1).

Points: 8 pts.

Solution.

From Slutsky theorem,

Xn − θ =
1

rn
(rn(Xn − θ))

D→ 0×X = 0.

Then Xn − θ
P→ 0 as well, i.e. Xn − θ = oP (1). Hence,

Xn = θ + (Xn − θ) = θ + oP (1).

10. Records. Let Z1, Z2, . . . be i.i.d. continuous random variables. We say a record
occurs at k if Zk > maxi<k Zi. Let Rk = 1 if a record occurs at k, and let Rk = 0
otherwise. Then R1, R2, . . . are independent Bernoulli random variables with P(Rk =
1) = 1 − P(Rk = 0) = 1/k for k = 1, 2, . . .. Let Sn =

∑n
k=1Rk denote the number

of records in the first n observations. Find E[Sn] and Var[Sn], and show that (Sn −
E[Sn])/

√
Var[Sn]

D→ N(0, 1) (The distribution of Sn is also the distribution of the
number of cycles in a random permutation.)

Points: 8 pts.

Solution.

Note that E[Rk] = 1
k

and V ar[Rk] = 1
k
(1− 1

k
) = k−1

k2
. Let Xn,1, . . . , Xn,n be Xn,k =

Rk − E[Rk], then Xn,k is mean 0 and variance k−1
k2

.Also, Sn − E[Sn] =
∑n

k=1Xn,k

and

σn :=
√
V ar[Sn] =

√√√√ n∑
k=1

k − 1

k2
.

Note that σ2
n >

∑n
k=2

1
2k
≥
∫ n+1

2
1
2x
dx = 1

2
log
(
n+1
2

)
→ ∞ as n → ∞. Hence for

any ε > 0, there exists N such that for all n ≥ N , σn ≥ 1
ε
. Since |Xn,k| < 1, the

Lindeberg-Feller condition is satisfied as

1

σ2
n

n∑
k=1

E
[
X2
n,kI(|Xn,k| ≥ εσn)

]
≤ 1

σ2
n

n∑
k=1

E
[
X2
n,kI(|Xn,k| ≥ 1)

]
= 0,

and hence limn→∞
1
σ2
n

∑n
k=1 E

[
X2
n,kI(|Xn,k| ≥ εσn)

]
= 0. Hence from Lindeberg-

Feller central limit theorem, 1
σn

∑n
k=1Xn,k converges toN(0, 1), i.e., (Sn−E[Sn])/

√
Var[Sn]

D→
N(0, 1).
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11. Bonus problem. Written by Jisu. In Problem 3, we used the fact that if Z ∼
N(0, In) (multivariate norml with mean 0 and variance identity), then Z

‖Z‖2 is uniformly

distributed over Sn−1 := {x ∈ Rn : ‖x‖2 = 1}. Intuitive way of arguing this is
that both the distribution of Z

‖Z‖2 and the uniform distribution on Sn−1 are invariant
under rotations, and hence they should equal. We formaly argue in the following
subproblems. We let O(n) be the set of n × n orthogonal matrices, i.e. O(n) =
{A ∈ Rn×n : A>A = AA> = In}. For A ∈ Rn×n and E ⊂ Rn, we use the notation
AE := {Ax ∈ Rn : x ∈ E}. We also let µZ/‖Z‖ be the induced measure on (S,BS)

defined as µZ/‖Z‖2(E) = P
(

Z
‖Z‖2 ∈ E

)
for all E ∈ BSn−1 , where BSn−1 is a Borel set of

Sn−1.
We first need to define the uniform distribution on Sn−1. It is indeed the n − 1-
dimensional Hausdorff measure. For any subset U ⊂ Rn, let diam(U) denote its
diameter, i.e. diam(U) = sup{‖x− y‖2 : x, y ∈ U}. Then for any E ⊂ Rn and for any
d, δ > 0, define

Hd
δ (E) = inf

{
∞∑
i=1

(diam(Ui))
d : E ⊂

∞⋃
i=1

Ui, diam(Ui) < δ

}
,

and let Hd(E) = limδ→0H
d
δ (E) be the d-dimensional Hausdorff measure. Then the

uniform distribution λSn−1 on Sn−1 is defined as λSn−1(E) = Hn−1(E)
Hn−1(Sn−1)

for all E ∈ BSn−1 .

For S ⊂ Rn and G ⊂ Rn×n, we call that G acts on S if for all A ∈ O(n), AS ⊂ S.
Also, we further say that G acts transitively on S if G acts on S and for any x, y ∈ S,
there exists A ∈ G such that Ax = y.

(a) Show that O(n) acts transitively on Sn−1.

Let BS be the Borel set of S and let µ be a finite measure on (S,BS), i.e. µ(S) <∞.
We call that µ is a Haar measure on (G,S) if µ is a nonzero and µ(AE) = µ(E) for all
Borel set E ∈ BS and A ∈ G.

(b) Show that µZ/‖Z‖2 is a Haar measure on (O(n),Sn−1). You can omit the part that
AE ∈ BSn−1 for E ∈ BSn−1 (which should be a repetition of Homework 2 Problem
9).

(c) Show that λSn−1 is a Haar measure on (O(n), Sn−1). You can assume that 0 <
Hn−1(Sn) <∞.

It is known that Haar measure is unique up to constant, i.e. if both µ and ν are Haar
measures on (G,S), then µ = ξν for some ξ > 0 (For reference, see Exercise 11.(i) in
http://terrytao.wordpress.com/2011/09/27/254a-notes-3-haar-measure-and-the-peter-weyl-theorem/

In our case, we have shown that both µZ/‖Z‖2 and λSn−1 are Haar measures on (O(n),Sn−1).
Since both µZ/‖Z‖2 and λSn−1 are probability measures, µZ/‖Z‖2 = λSn−1 should hold.
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Points: 10 pts = 3 + 4 + 3.

Solution.

(a)

First, we show that for all A ∈ O(n), ASn−1 ⊂ Sn−1. x ∈ Sn−1 is equivalent to ‖x‖22 = 1.
Then for any A ∈ O(n), x ∈ Sn−1 implies ‖Ax‖22 = x>A>Ax = x>x = ‖x‖22 = 1, and
hence Ax ∈ Sn−1. Therefore, ASn−1 ⊂ Sn−1, and O(n) acts on Sn−1.
Second, we show that for any x, y ∈ Sn−1, there exists Ax = y. Let {x1, . . . , xn},
{y1, . . . , yn} be two orthonormal basis of Rn with x1 = x and y1 = y. Let X =(
x1 · · · xn

)
and Y =

(
y1 · · · yn

)
, then from orthonormality, X, Y ∈ O(n). Let

A = Y X>, then AA> = Y X>XY > = Y Y > = In and A>A = XY >Y X> = XX> = In,
and hence A ∈ O(n), also, AX = Y X>X = Y , hence in particular, Ax1 = y1 holds,
i.e. Ax = y. Hence O(n) acts transitively on Sn−1.
(b)

We need to show that µZ/‖Z‖2(AE) = µZ/‖Z‖2(E) for all Borel set E ∈ BSn−1 and
A ∈ O(n). Note that µZ/‖Z‖2(AE) can be expanded as

µZ/‖Z‖2(AE) = P

(
Z

‖Z‖2
∈ AE

)
= P

(
A−1Z

‖Z‖2
∈ E

)
.

Then, note that ‖Z‖22 = Z>Z = Z>AA>Z = ‖A−1Z‖2, and hence A−1Z
‖Z‖2 = A−1Z

‖A−1Z‖2 and

P

(
A−1Z

‖Z‖2
∈ E

)
= P

(
A−1Z

‖A−1Z‖2
∈ E

)
.

Also note that A−1Z = A>Z is distributed as N(0, A>InA) = N(0, Id), and hence
A−1Z
‖A−1Z‖2 has the same distribution as Z

‖Z‖2 . Hence

P

(
A−1Z

‖A−1Z‖2
∈ E

)
= P

(
Z

‖Z‖2
∈ E

)
= µZ/‖Z‖2(E).

Hence combining above gives µZ/‖Z‖2(AE) = µZ/‖Z‖2(E), and therefore µZ/‖Z‖2 is a
Haar measure.

(c)

We need to show that λSn−1(AE) = λSn−1(E) for all Borel set E ∈ BSn−1 and A ∈ O(n).

Since λSn−1(E) = Hn−1(E)
Hn−1(Sn−1)

, it is equivalent to showing that Hn−1(AE) = Hn−1(E).

Note that A ∈ O(n) prserves norm, i.e. ‖Ax‖2 =
√
x>A>Ax =

√
x>x = ‖x‖2,

hence diam(AU) = diam(U) for any subset U ⊂ Rn. Hence for fixed δ > 0 and
for any {Ui} with E ⊂

⋃∞
i=1 Ui, diam(Ui) < δ, AE ⊂

⋃∞
i=1AUi and diam(AUi) < δ
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with
∑∞

i=1(diam(AUi))
n =

∑∞
i=1(diam(Ui))

n. Hence Hn
δ (AE) ≤ Hn

δ (E), and by E =
A−1(AE), Hn

δ (E) ≤ Hn
δ (AE) as well, and hence

Hn
δ (AE) = Hn

δ (E).

Hence, Hn(AE) = limδ→0H
n
δ (AE) = limδ→0H

n
δ (E) = Hn(E), and correspondingly

λSn−1(AE) = λSn−1(E). Therfore, λSn−1 is a Haar measure.
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