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Figure 10.2

Geometrically, the function g, is obtained from f, by cutting off the graph of f;
from above by ¢ and from below by —g, as shown by the example in Fig. 10.27
Then g (x}| < g(x) almost everywhere on I, and it is casy to verify that g, —» f
almost everywhere on I Therefore, by the lebesgue dominated convergence
theorem, f e L(D.

19.12 LEBESGUE INTEGRALS ON UNBOUNDED INTERVALS AS LIMITS
OF INTEGRALS ON BOUNDED INTERVALS

ﬂwrcm 10.31. Let f be defined on the half-infinite interval I = [a, + ). Assume
that f is Lebesgue-integrable on the compact interval (a, &) for each b > a, and
that there is a positive constant M such that

]
f iflsM foraldbza (20)
Then f & L(I), the limit limy., , , [® f exists, and
+a@ L]
J; r=im [ @

{’roof. Let {b,} be any increasing sequence of real numbers with b, = asuch that
lim,_ , b, = +o0. Define a sequence { £} on [ as follows:

f,(x)={f(x) faxx<bh,

0 otherwise.

Bachj',e L(TI) (by Theorem 10.18) and f, » fon I. Hence, |4l - |flon I But
14l is increasing and, by (20), the sequence {[; |£,f} is bounded above by M.
Therefore lim, ., ,, §; [ £} exists. By the Levi theorem, the limit function |Fle L.
Now each [£| < |fland [, - fon I, so by the Lebesgue dominated convergence
theorem, f€ L{I) and lim, ., {; f, = [, /. Therefore

L e

for all sequences {5,} which increase to +<0. This completes the proof,
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There is, of course, a corresponding theorem for the interval { - o0, a] which

concludes that
£ £ d
- e —w ],

provided that [¢|f] < Mforalle < a. If [21f] < M for all real ¢ and b with
¢ < b, the two theorems together show that fe L(R) and that

+m a L]
J f=lim | £+ lim | £
- co=an o b=~+tw Jg

Example 1. Let fix) = 1J(I + x*) for all x in R. We shall prove that /= L(R) and that
{g F = n. Now fis nonnegative, and if ¢ < b we have

L] b dx
F= = arctan b — arclan ¢ < 7.
e Je 1427

Therefore, /€ L{R) and

50 1] b
f=0im | % _ 4 tm *2:5+f=m
— e Jo 1+ x* ot Jo L+ x z2 2

Example 2. In this example the limit on the right of (21) exists but f¢ I{). Let
i = [0, +ov) and define fon I as follows:

-1y

n

fn—1sx<n foon=12...

fix) =

I & > 0,let m = [b], the greatest integer < 5. Then
(b - m}(_ l)llH—l

[re[re [r-5r
0 o - =y N m-+ L

As b — + oo the last term — 0, and we find

b i iy
lim ff= Ew= —log 2.
0 =1 A

LES -
MNow we assume £z L(I) and obtain a contradiction. Let Jf, be defined by

1£(x) for0 s x=n,
0 forx > n.

fix) = {

Then {f,} increases and f(x) » |f(x)} everywhere on I Since fe L{I) we also have
£l e L(H). But [£{x)] = |f{x)| everywhere on 7 so by the Lebesgue dominated con-
vergence theorem the sequence {[; £} converges. But this is a contradiction since
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10.13 IMPROPER RIEMANN INTEGRALS

;Peﬁail‘im 1032, If [ is Riemapn-integrable on [a, b] for every b = a, and if the
imit
£
lim J(x) dx  exists,

brboo 1,
thten J is said to be improper Riemann-integrable on [a, + ) and the improper
Riemann integral of f, denoted by [}= f(x) dx or {* f(x) dx, is defined by the
equation
+x b

Jix)dx = lim F(x) dx.
P

M —+w g

In Example 2 of the foregoing section the improper Riemann integral
s © f{x) dx exists but f is not Lebesgue-integrable on [0, +co). That example
should be contrasted with the following theorem.

Theorem 10.33. Assume f is Riemann-integrable on [a, b) for every b > a, and
assume there is g positive constant M such that

1]
J. ) de s M forevery b = a. (22)
Then baﬂ‘f f and |f| are improper Riemann-integrable on [a, +o0). Also, f is
Lebesgue-integrable on {a, + o0) and the Lebesgue integral of f is equal to the im-
proper Riemann iriegral of f.

Proof. Let F{b)ﬁ: M| f(x)_l dx. Then Fis an increasing function which is bounded
above By M, so lim,... , ,, F(b) exists. Therefore | f] is improper Riemann-integrable
on fa, 4+ o). Since

0 < 1S - A(x) < 25,
the limit

; ]
im J‘ WO — £} dx

al§o exists; hence the limit lim, , , ., {2 £(x) dx exists. This proves that fis improper
Riemann-integrable on [a, + 00). Now we use inequality (22), along with Theorem
10.31, to deduce that fis Lebesgue-integrable on [a, + o) and that the Lebesgue
integral of f'is equal to the improper Riemann integral of £,

?om, There are corresponding results for improper Riemann integrals of the
orm

I ' ) dx = Gim | f0x) dx,

— —
- - a

I

j “fdx = tim J.b Fx) dx,

Browgor
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‘rf(x) dx = lm hf(x) dx,

Liad 5 2 P9
which the reader can formulate for himself,

If both integrals {<, f(x) dx and [} f(x) dx exist, we say that the integral
%2 f(x) dx exists, and its value is defined to be their sum,

+ L] + @
J Jix)dx = j‘ f(x)dx + J. f(x) dx.
If the integral [ f(x) dx exists, its value is also equal to the symmetric limit

b
lim I J(x) dx.
bt Jog

However, it is important to realize that the symmetric limit might exist even when
22 f(x) dx does not exist (for example, take f(x) = x for all x). In this case the
symmetric limit is called the Cauchy principal value of [*Z f(x) dx. Thus §*2 x dx
has Cauchy principal value 0, but the integral does not exist.

Example 1. Let f(x) = e *x™ !, where y is a fixed real number. Since e™%*5"~1 - 0
as x -+ +00, there is a constant M such that ¢~=2x*~! < M for all x = 1. Then
e 7V = Me 2 5o

f'f(")l dx = Mfc"‘f’ dx = 2M(l — &%) < 2M.
1 [}

Hence the integral §§™ e~*x*~1 dr exists for every real y, both as an improper Riemann
integral and as a Lebesgue integral, :

Fxsmple 2, The Gamma function integral. Adding the integral of Exampie 1 to the
integral {4 ¢~*x*~! dx of Example 2 of Section 10.9, we find that the Lebesgue integral

+ oo

Iy = f e dx
o

exists for each real y > 0. The function T so defioed is called the Gamma fanction.

Example 4 below shows its relation to the Riemann zeta function.

NOTE. Many of the theorems in Chapter 7 concerning Riemann integrals can be
converted into theorems on improper Riemann integrals. To illustrate the straight-
forward manner in which some of these extensions can be made, consider the
formula for integration by parts:

] b
'[ f(x)g'(x) dx = f(b)g(b) — fla)g(a) ~ J glx}f'(x) dx.

Since b appears in three terms of this equation, there are three limits to consider
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as b > oo, If two of these limits exist, the third also exists and we get the
formula

o0 . [
J' Jg'G) dx = timf(b)g(5) ~ fleda(a) - J' 600 (x) dx.
'] = .

i Other theqrems on Riemann integrals can be extended in much the same way
to improper R[emann integrals. However, it is not necessary to develop the details
of these extensions any further, since in any particular example, it suffices to apply
the required theorem to a compact interval [a, 5] and then let & — + co.
Enmp!e;!». The functional equation T(y + 1) = y[{y). 0 < a < b, integration by
parts gives

» s
f e dx = e — Pt + yJ‘ e " gy,

- o
Letting @ — 0+ and & — + o0, we find T(y + 1) = yI{y).

Example 4. Integral representation for the Riemann zeta Jfunction. The Riemann zeta
function { is defined for 5 = 1 by the equation )

= 1
OEDIE
=1

'_I‘hia example shows how the Levi convergenoe theorem for sevies can be used to derive an
integral representation,

(s = f R

a -1
The integral exists as a Lebesgue integral,
In the integral for I'(s} we make the change of variable r = nx, n > 0, to obtain

= @
I'(s) = f Pl St B P ”'j P i
o 0

Hence, if 2 > 0, we have
27(5) = on e "t dx,
]
H 5 > 1, the series 32 ; »~* converges, so we have
wre = 3° J; T e g,

the series on the right being convergent. Since the integrand is nonnegative, Levi's con-
vergence theorem (Theorem 10.25) tells us that the series $9 | = x5t converges
almost everywhere to a sum function which is Lebesgue-integrable on [0, + co) and that

o

Ere =3 J‘ emeiae = (T3 et g
o 9

Lk 4 =¥
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Butif x > 0, wehave 0 < £ * < 1 and hence,
Semwo € b
1—e* £-1

A=l

the series being a geometric series. Therefore we have

e—nxt—l —

[Ms

e -1

o

almost everywhere on [0, + ), in fact everywhere except at 0, so
-1

= s Xt 1 = w__
{(S)F(s)-J;Ze x* dx—J;ex_ldx.

n=1

10.14 MEASURABLE FUNCTIONS

Every function f which is Lebesgue-integrable on an interval £ is the limit, almost
everywhere on [, of a certain sequence of step functions. However, the converse
is not true.  For example, the constant function f = 1 is a limit of step functions
on the real line R, but this function is not in L{R). Therefore, the class of functions
which are limits of step functions is [arger than the class of Lebesgue-integrable
functions. The functions in this larger class are called measurable functions.

Definition 10.34. A function f defined on I is called measurable on I, and we write
F e M(D), if there exists a sequence of step functions {s,} on I such that

fim s(x) = f(x) almost everywhere on I.

-+
Note. If fis measurable on J then f is measurable on every subinterval of 7.

As already noted, every function in L{I} is measurable on I, but the converse
is not true. The next theorem provides a partial converse.

Theorem 10.35. If fe M(I) and if | f(x)| < g(x) almost everywhere on I for some
nonnegative g in L{I), then fe L(I).

Proof. There is a sequence of step functions {s,} such that 5(x) — j(x) almost
everywhere on 1. Now apply Theorem 10.30 to deduce that f e L(J).

Corollary 1. If fe M{I) and | f] € L), then f & L{I).
Corollary 2. If [ is measurable and bounded on a bounded interval I, then f e L(I).
Further properties of measurable functions are given in the next theorem,

Theorem 10.36. Let ¢ be a real-valued function continuous on R, If fe M(I) and
g € M(I), define h on 1 by the equation

h(x) = @[f(x}, g(x)].



