Nonmeasurable Sets

There exist in (0,1] sets that lie outside \mathcal{B} . For the construction (due to Vitali) it is convenient to use addition modulo 1 in (0,1]. For $x,y \in (0,1]$ take $x \oplus y$ to be x+y or x+y-1 according as x + y lies in (0,1] or not. Put $A \oplus x = [a \oplus x : a \in A]$.

Let \mathscr{L} be the class of Borel sets A such that $A \oplus x$ is a Borel set and $\lambda(A \oplus x) = \lambda(A)$. Then \mathscr{L} is a λ -system containing the intervals, and so $\mathscr{B} \subset \mathscr{L}$ by the π - λ theorem. Thus $A \in \mathscr{B}$ implies that $A \oplus x \in \mathscr{B}$ and $\lambda(A \oplus x) = \lambda(A)$. In this sense, λ is translation-invariant.

Define x and y to be equivalent $(x \sim y)$ if $x \oplus r = y$ for some rational r in (0, 1]. Let H be a subset of (0, 1] consisting of exactly one representative point from each equivalence class; such a set exists under the assumption of the axiom of choice [A8]. Consider now the countably many sets $H \oplus r$ for rational r

These sets are disjoint, because no two distinct points of H are equivalent. (If $H \oplus r_1$ and $H \oplus r_2$ share the point $h_1 \oplus r_1 = h_2 \oplus r_2$, then $h_1 \sim h_2$; this is impossible unless $h_1 = h_2$, in which case $r_1 = r_2$.) Each point of (0, 1] lies in one of these sets, because H has a representative from each equivalence class. (If $x \sim h \in H$, then $x = h \oplus r \in H \oplus r$ for some rational r.) Thus $(0, 1] = \bigcup_r (H \oplus r)$, a countable disjoint union.

If H were in \mathscr{B} , it would follow that $\lambda(0,1] = \sum_r \lambda(H \oplus r)$. This is impossible: If the value common to the $\lambda(H \oplus r)$ is 0, it leads to 1 = 0; if the common value is positive, it leads to a convergent infinite series of identical positive terms $(a + a + \cdots < \infty \text{ and } a > 0)$. Thus H lies outside \mathscr{B} .