
Chapter 4

Efficient Likelihood Estimation and
Related Tests

1 Maximum likelihood and efficient likelihood estimation

We begin with a brief discussion of Kullback - Leibler information.

Definition 1.1 Let P be a probability measure, and let Q be a sub-probability measure on (X,A)
with densities p and q with respect to a sigma-finite measure µ (µ = P + Q always works). Thus
P (X) = 1 and Q(X) ≤1. Then the Kullback - Leibler information K(P,Q) is

K(P,Q) ≡ EP

{
log

p(X)
q(X)

}
.(1)

Lemma 1.1 For a probability measure Q and a (sub-)probability measure Q, the Kullback-Leibler
information K(P,Q) is always well-defined, and

K(P,Q)
{

∈ [0,∞] always
= 0 if and only if Q = P .

Proof. Now

K(P,Q) =
{

log 1 = 0 if P = Q ,
log M > 0 if P = MQ, M > 1 .

If P ̸= MQ, then Jensen’s inequality is strict and yields

K(P,Q) = EP

(
−log

q(X)
p(X)

)

> −log EP

(
q(X)
p(X)

)
= −log EQ1[p(X)>0]

≥ −log 1 = 0 .

✷

Now we need some assumptions and notation. Suppose that the model P is given by

P = {Pθ : θ ∈ Θ} .
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We will impose the following hypotheses about P:

Assumptions:

A0. θ ̸= θ∗ implies Pθ ̸= Pθ∗ .

A1. A ≡ {x : pθ(x) > 0} does not depend on θ.

A2. Pθ has density pθ with respect to the σ−finite measure µ and X1, . . . ,Xn are i.i.d. Pθ0 ≡ P0.

Notation:

L(θ) ≡ Ln(θ) ≡ L(θ|X) ≡
n∏

i=1

pθ(Xi) ,

l(θ) = l(θ|X) ≡ ln(θ) ≡ log Ln(θ) =
n∑

i=1

log pθ(Xi) ,

l(B) ≡ l(B|X) ≡ ln(B) = sup
θ∈B

l(θ|X) .

Here is a preliminary result which motivates our definition of the maximum likelihood estimator.

Theorem 1.1 If A0 - A2hold, then for θ ̸= θ0

1
n

log
(

Ln(θ0)
Ln(θ)

)
=

1
n

n∑

i=1

log
pθ0(Xi)
pθ(Xi)

→a.s. K(Pθ0 , Pθ) > 0 ,

and hence

Pθ0(Ln(θ0|X) > Ln(θ|X)) → 1 as n → ∞ .

Proof. The first assertion is just the strong law of large numbers; note that

Eθ0 log
pθ0(X)
pθ(X)

= K(Pθ0 , Pθ) > 0

by lemma 1.1 and A0. The second assertion is an immediate consequence of the first. ✷

Theorem 1.1 motivates the following definition.

Definition 1.2 The value θ̂ = θ̂n of θ which maximizes the likelihood L(θ|X), if it exists and is
unique, is the maximum likelihood estimator (MLE) of θ. Thus L(θ̂) = L(Θ) or l(θ̂n) = l(Θ).

Cautions:

• θ̂n may not exist.

• θ̂n may exist, but may not be unique.

• Note that the definition depends on the version of the density pθ which is selected; since this
is not unique, different versions of pθ lead to different MLE’s
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When Θ ⊂ Rd, the usual approach to finding θ̂n is to solve the likelihood (or score) equations

l̇(θ|X) ≡ l̇n(θ) = 0 ;(2)

i.e. l̇θi(θ|X) = 0, i = 1, . . . , d. The solution θ̃n say, may not be the MLE, but may yield simply a
local maximum of l(θ).

The likelihood ratio statistic for testing H : θ = θ0 versus K : θ ̸= θ0 is

λn =
L(Θ)
L(θ0)

=
supθ∈Θ L(θ|X)

L(θ0|X)
=

L(θ̂n)
L(θ0)

,

λ̃n =
L(θ̃n)
L(θ0)

.

Write P0, E0 for Pθ0 , Eθ0 . Here are some more assumptions about the model P which we will use
to treat these estimators and test statistics.

Assumptions, continued:

A3. Θ contains an open neighborhood Θ0 ⊂ Rd of θ0 for which:

(i) For µ a.e. x, l(θ|x) ≡ log pθ(x) is twice continuously differentiable in θ.

(ii) For a.e. x, the third order derivatives exist and
···
l jkl (θ|x) satisfy |

···
l jkl (θ|x)| ≤Mjkl(x)

for θ ∈ Θ0 for all 1 ≤j, k, l ≤d with E0Mjkl(X) < ∞.

A4. (i) E0{l̇j(θ0|X)} = 0 for j = 1, . . . , d.

(ii) E0{l̇2j (θ0|X)} < ∞ for j = 1, . . . , d.

(iii) I(θ0) = (−E0{̈ljk(θ0|X)}) is positive definite.

Let

Zn ≡ 1√
n

n∑

i=1

l̇(θ0|Xi) and l̃(θ0|X) = I−1(θ0)l̇(θ0|X) ,

so that

I−1(θ0)Zn =
1√
n

n∑

i=1

l̃(θ0|Xi) .

Theorem 1.2 Suppose that X1, . . . ,Xn are i.i.d. Pθ0 ∈ P with density pθ0 where P satisfies A0 -
A4. Then:

(i) With probability converging to 1 there exist solutions θ̃n of the likelihood equations such that
θ̃n →p θ0 when P0 = Pθ0 is true.

(ii) θ̃n is asymptotically linear with influence function l̃(θ0|x). That is,

√
n(θ̃n −θ0) = I−1(θ0)Zn + op(1) =

1√
n

n∑

i=1

l̃(θ0|Xi) + op(1)

→d I−1(θ0)Z ≡ D ∼ Nd(0, I−1(θ0)) .
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(iii)

2log λ̃n →d ZT I−1(θ0)Z = DT I(θ0)D ∼ χ2
d .

(iv)

Wn ≡
√

n(θ̃n −θ0)T În(θ̃n)
√

n(θ̃n −θ0) →d DT I(θ0)D = ZT I−1(θ0)Z ∼ χ2
d ,

where

În(θ̃n) =

⎧
⎪⎨

⎪⎩

I(θ̃n) , or
n−1

∑n
i=1 l̇(θ̃n|Xi)l̇(θ̃n|Xi)T , or

−n−1∑n
i=1 l̈(θ̃n|Xi) .

(v)

Rn ≡ ZT
n I−1(θ0)Zn → ZT I−1(θ0)Z ∼ χ2

d .

Here we could replace I(θ0) by any of the possibilities for În(θ̃n) given in (iv) and the con-
clusion continues to hold.

(vi) The model P satisfies the LAN condition at θ0:

l(θ0 + n−1/2t) −l(θ0) = tT Zn −1
2
tT I(θ0)t + oP0(1)

→d tT Z −1
2
tT I(θ0)t ∼ N(−(1/2)σ2

0 ,σ2
0)

where σ2
0 ≡ tT I(θ0)t. Note that
√

n(θ̂n −θ0) = t̂n = argmax{ln(θ0 + n−1/2t) −ln(θ0)}
→d argmax{tT Z −(1/2)tT I(θ0)t} = I−1(θ0)Z
∼ Nd(0, I−1(θ0)).

Remark 1.1 Note that the asymptotic form of the log-likelihood given in part (vi) of theorem 1.2
is exactly the log-likelihood ratio for a normal mean model Nd(I(θ0)t, I(θ0)). Also note that

tT Z −1
2
tT I(θ0)t =

1
2
ZT I−1(θ0)Z −1

2
(t −I−1(θ0)Z)T I(θ0)(t −I−1(θ0)Z) ,

which is maximized as a function of t by t̂ = I−1(θ0)Z with maximum value ZT I−1(θ0)Z/2.

Corollary 1 Suppose that A0-A4 hold and that ν ≡ ν(Pθ) = q(θ) is differentiable at θ0 ∈ Θ.
Then ν̃n ≡ q(θ̃n) satisfies

√
n(ν̃n −ν0) =

1√
n

n∑

i=1

l̃ν(θ0|Xi) + op(1) →d N(0, q̇T (θ0)I−1(θ0) q̇(θ0)) .

where l̃ν(θ0|Xi) = q̇T (θ0)I−1(θ0)l̇(θ0|Xi) and ν0 ≡ q(θ0).
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If the likelihood equations (2) are difficult to solve or have multiple roots, then it is possible to
use a one-step approximation. Suppose that θn is a preliminary estimator of θ and set

θ̌n ≡ θn + Î−1
n (θn)(n−1 l̇(θn|X)) .(3)

The estimator θ̌n is sometimes called a one-step estimator.

Theorem 1.3 Suppose that A0-A4 hold, and that θn satisfies n1/4 (θn −θ0) = op(1); note that the
latter holds if

√
n(θn −θ0) = Op(1). Then

√
n(θ̌n −θ0) = I−1(θ0)Zn + op(1) →d Nd(0, I−1(θ0))

where Zn ≡ n−1/2
∑n

i=1 l̇(θ0|Xi).

Proof. Theorem 1.2. (i) Existence and consistency. For a > 0, let

Qa ≡ {θ ∈ Θ : |θ−θ0| = a} .

We will show that

P0{l(θ) < l(θ0) for all θ ∈ Qa} → 1 as n → ∞ .(a)

This implies that L has a local maximum inside Qa. Since the likelihood equations must be satisfied
at a local maximum, it will follow that for any a > 0 with probability converging to 1 that the
likelihood equations have a solution θ̃n(a) within Qa; taking the root closest to θ0 completes the
proof.

To prove (a), write

1
n

(l(θ) −l(θ0)) =
1
n

(θ−θ0)T l̇(θ0) −
1
2
(θ−θ0)T

(
−1

n
l̈(θ0)

)
(θ−θ0)

+
1
6n

d∑

j=1

d∑

k=1

d∑

l=1

(θj −θj0)(θk −θk0)(θl −θl0)
n∑

i=1

γjkl(Xi)Mjkl(Xi)

= S1 + S2 + S3(b)

where, by A3(ii), 0 ≤|γjkl(x)| ≤1. Furthermore, by A3(ii) and A4,

S1 →p 0 ,(c)

S2 →p −1
2
(θ−θ0)T I(θ0)(θ−θ0) ,(d)

where

(θ−θ0)T I(θ0)(θ−θ0) ≥λd|θ−θ0|2 = λda
2(e)

and λd is the smallest eigenvalue of I(θ0) (recall that supx(xT Ax)/(xT x) = λ1, infx(xT Ax)/(xT x) =
λd where λ1 ≥. . . ≥λd > 0 are the eigenvalues of A symmetric and positive definite), and

S3 →p
1
6

∑

j

∑

k

∑

l

(θj −θj0)(θk −θk0)(θl −θl0)Eγjkl(X1)Mjkl(X1) .(f)
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Thus for any given ϵ, a > 0, for n sufficiently large with probability larger than 1−ϵ, for all θ ∈ Qa,

|S1| < da3 ,(g)
S2 < −λda

2/4 ,(h)

and

|S3| ≤
1
3
(da)3

∑

j,k,l

mjkl ≡ Ba3(i)

where mjkl ≡ EMjkl(X). Hence, combining (g), (h), and (i) yields

sup
θ∈Qa

(S1 + S2 + S3) ≤ sup
θ∈Qa

|S1 + S3| + sup
θ∈Qa

S2(j)

≤ da3 + Ba3 −λd

4
a2

≤ (B + d)a3 −λd

4
a2 =

{
(B + d)a −λd

4

}
a2 .

The right side of (j) is < 0 if a < λd/{4(B + d)}, and hence (a) holds.

On the set

Gn ≡ {θ̃n solves l̇n(θ̃n) = 0 and |θ̃n −θ0| < ϵ}(k)

with P0(Gn) → 1 as n → ∞, we have

0 =
1√
n
l̇n(θ̃n) =

1√
n
l̇(θ0) −(−n−1l̈n(θ∗n))

√
n(θ̃n −θ0)(l)

where |θ∗n −θ0| ≤|θ̃n −θ0|. Now from A4(i), (ii)

Zn ≡ 1√
n
l̇n(θ0) =

1√
n

n∑

i=1

l̇(θ0|Xi) →d Nd(0, I(θ0)) .(m)

Furthermore

−1
n
l̈n(θ∗n) = −1

n
l̈n(θ0) + op(1) →p I(θ0)(n)

by using θ̃n →p θ0 and A3(ii) together with Taylor’s theorem. Since matrix inversion is continuous
(at nonsingular matrices), it follows that the inverse

(
−1

n
l̈(θ∗n)

)−1

(o)

exists with high probability, and satisfies
(
−1

n
l̈(θ∗n)

)−1

→p I(θ0)−1 .(p)

Hence we can use (l) to write, on Gn,
√

n(θ̃n −θ0) = I−1(θ0)Zn + op(1)(q)
→d I−1(θ0)Z ∼ Nd(0, I−1(θ0)) .
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This proves (ii).
It also follows from (n) that

√
n(θ̃n −θ0)T

(
−1

n
l̈(θ̃n)

)√
n(θ̃n −θ0) →d ZT I−1(θ0)Z ∼ χ2

d ,(r)

and that, since I(θ) is continuous at θ0,
√

n(θ̃n −θ0)T I(θ̃n)
√

n(θ̃n −θ0) →d ZT I−1(θ0)Z ∼ χ2
d .(s)

To prove (iii), we write, on the set Gn,

l(θ0) = l(θ̃n) + l̇T (θ̃n)(θ0 −θ̃n) −1
2
√

n(θ0 −θ̃n)T
(
−1

n
l̈(θ∗n)

)√
n(θ0 −θ̃n)(t)

where |θ∗n −θ0| ≤|θ̃n −θ0|. Thus

2log λ̃n = 2{l(θ̃n) −l(θ0)}

= 0 + 2
1
2
√

n(θ̃n −θ0)T
(
−1

n
l̈(θ∗n)

)√
n(θ̃n −θ0)

= DT
n I(θ0)Dn + op(1) , with Dn ≡

√
n(θ̃n −θ0)

→d DT I(θ0)D where D ∼ Nd(0, I−1(θ0))
∼ χ2

d .

Finally, (v) is trivial since everything is evaluated at the fixed point θ0. ✷

Proof. Theorem 1.3. First note that
1
n
l̈n(θn) =

1
n
l̈n(θ0) +

1
n

···
l n (θ∗n)(θn −θ0)

=
1
n
l̈n(θ0) + Op(1)|θn −θ0|

so that
(
−1

n
l̈n(θn)

)−1

=
(
−1

n
l̈n(θ0)

)−1

+ Op(1)|θn −θ0|(a)

and
1√
n
l̇n(θn) =

1√
n
l̇n(θ0) +

1
n
l̈n(θ0)

√
n(θn −θ0)(b)

+
1
2
√

n(θn −θ0)T
(

1
n

···
l n (θ∗n)

)
(θn −θ0) .

Therefore it follows that

√
n(θ̌n −θ0) =

√
n(θn −θ0) +

(
−1

n
l̈n(θn)

)−1 1√
n
l̇n(θn)

=
√

n(θn −θ0)

+

{(
−1

n
l̈n(θ0)

)−1

+ Op(1)|θn −θ0|
}
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·
{

Zn +
1
n
l̈n(θ0)

√
n(θn −θ0) +

1
2
√

n(θn −θ0)T
(

1
n

···
l n (θ∗n)

)
(θn −θ0)

}

=
(
−1

n
l̈n(θ0)

)−1

Zn + Op(1)|θn −θ0|Zn

+ Op(1)
1
n
l̈n(θ0)

√
n|θn −θ0|2

+ Op(1)
1
2
√

n(θn −θ0)T
(

1
n

···
l n (θ∗n)

)
(θn −θ0)

= I−1(θ0)Zn + op(1) + Op(1)
√

n|θn −θ0|2

= I−1(θ0)Zn + op(1) .

Here we used
∣∣∣

1√
n

···
l n (θ∗n)(θn −θ0)(θn −θ0)

∣∣∣

=
∣∣∣

d∑

k=1

d∑

l=1

√
n(θnk −θ0k)(θnl −θ0l)

1
n

···
l jkl (θ∗n|X)

∣∣∣

≤ d3√n|θn −θ0|2
d∑

j=1

1
n

n∑

i=1

|
···
l jkl (θ∗n|Xi)|

= Op(1)
√

n|θn −θ0|2

since |θnk −θ0k| ≤|θn −θ0| for k = 1, . . . , d and |x| ≤dmax1≤k≤d |xk| ≤d
∑d

k=1 |xk|. ✷

Exercise 1.1 Show that K(P,Q) ≥2H2(P,Q).


