Chapter 4

Efficient Likelihood Estimation and
Related Tests

1 Maximum likelihood and efficient likelihood estimation
We begin with a brief discussion of Kullback - Leibler information.
Definition 1.1 Let P be a probability measure, and let @) be a sub-probability measure on (X, .A)

with densities p and ¢ with respect to a sigma-finite measure p (u = P + @ always works). Thus
P(X) =1 and Q(X) < 1. Then the Kullback - Leibler information K (P, Q) is

1) K(P,Q)=Ep {log Zg;} .

Lemma 1.1 For a probability measure () and a (sub-)probability measure @, the Kullback-Leibler
information K (P, Q) is always well-defined, and

€ [0,00] always
K(P,Q){_o if and only if Q = P.

Proof. Now

_Jlogl=0 ifP=Q,
K(P’Q)_{ logM >0 iftP=MQ, M>1.

If P # M@, then Jensen’s inequality is strict and yields

Q(X)>

K(PvQ) = Ep <_10g
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Now we need some assumptions and notation. Suppose that the model P is given by

P:{Pgt 96@}
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We will impose the following hypotheses about P:

Assumptions:

AO0. 0 +# 0" implies Py # Ppy-~.

Al. A={z: pp(z) > 0} does not depend on 6.

A2. Py has density pp with respect to the o —finite measure px and Xy,..., X, are iid. Py, = R.

Notation:
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Ln(e 9|X Hpﬂ

(6) = l(fmzznw)zlogLn(e>=Zlogpa<Xz

U(BIX) =1n(B) = Zggl(ﬂli) :

o~
—~
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Here is a preliminary result which motivates our definition of the maximum likelihood estimator.

Theorem 1.1 If A0 - A2 hold, then for 6 # 6

1 Ln(eo)) 1 n ng(XZ‘)
—lo = — lo —q.5. K(Py,, Py) >0,
—log ( .0) - ; 8 e (X0) (Pao, Fo)

and hence

Py (L (60| X) > Lp(0|X)) — 1 as n—oo.

Proof. The first assertion is just the strong law of large numbers; note that

X
Ey, log p"o((X)) = K(Py,,Py) >0

by lemma 1.1 and AO. The second assertion is an immediate consequence of the first. O
Theorem 1.1 motivates the following definition.

Definition 1.2 The value 6 =6, of # which maximizes the likelihood L(0].X), if it exists and is
unique, is the maximum likelihood estimator (MLE) of . Thus L (9) = L(O) or 1(9 ) =1(0).

Cautions:
° é\n may not exist.
° (9\” may exist, but may not be unique.

e Note that the definition depends on the version of the density py which is selected; since this
is not unique, different versions of py lead to different MLE’s



1. MAXIMUM LIKELIHOOD AND EFFICIENT LIKELIHOOD ESTIMATION )

When © C R¢, the usual approach to finding </9\n is to solve the likelihood (or score) equations
(2)  101X) =1,(0)=0;

ie. igi(9|X) =0,i=1,...,d. The solution 6, say, may not be the MLE, but may yield simply a
local maximum of [(#).
The likelihood ratio statistic for testing H : 6 = 0y versus K : 0 # 0y is

N L(©) _ SUPpeo L(9)1X) _ L(6,,)
" L(6o) L(6o]X) L(6o)’

N _ L(gn)

A = L(60) .

Write Py, Eq for Py,, Eg,. Here are some more assumptions about the model P which we will use
to treat these estimators and test statistics.

Assumptions, continued:
A3. O contains an open neighborhood 0y C R? of 6 for which:

i) For u a.e. z, I(f|x) = log pg(x) is twice continuously differentiable in 6.
1

(ii) For a.e. x, the third order derivatives exist and .i.jkl (0]x) satisfy | .i.jkl Olz)| < Mjp(x)
for 6 € ©¢ for all 1 < j,k,1 < d with EgM;,(X) < oc.

A4. (i) Eo{lj(6o|X)} =0for j=1,...,d.
(i) Eo{12(6o|X)} < oo for j=1,....d.
(iii) I(6) = (— Eo{l;r(00|X)}) is positive definite.

Let
Zy=—=> 1(60|X;)  and  1(60|X) = I7"(60)i(60|X).

so that

Theorem 1.2 Suppose that Xi,..., X, areiid. B, € P with density pg, where P satisfies A0 -
A4. Then:

(i) With probability converging to 1 there exist solutions 571 of the likelihood equations such that
0, —p 0o when Py = Py, is true.

(ii) 6, is asymptotically linear with influence function 1(fg|x). That is,

Vil —0) = 700 Zn + 0p(1) = % S 1(60]X0) + 0,(1)
=1

—q I7Y09)Z = D ~ Ng(0,17(6y)) .
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(iii)

2log A —a ZT T (00)Z = DTI(6y)D ~ x3.
(iv)

Wi, = Va0, — 00) 1y(0,) /16, — 0) —q DTI(60)D = Z7T7'(6)Z ~ X3,

where
N 1(6,), or
L(6n) =4 2300 10, X)1(0, X7, or
—nt Z?:l l(en‘Xi) .

(v)

R, = ZIT7Y00)Z, — ZTT7Y(00)Z ~ 2.

Here we could replace I(f) by any of the possibilities for I,,(6,,) given in (iv) and the con-
clusion continues to hold.

(vi) The model P satisfies the LAN condition at 6y:
00+ 12t —1(00) = 77, %tTI(HO)t +on(1)
—a 77— S IB0) ~ N(~(1/2)03,07)
where 02 = t71(6p)t. Note that

Vb, —00) =t, = argmax{l,(6y +n"*t) — 1,(6)}
—q argmax{t’ Z — (1/2)tT1(6p)t} = I71(60)Z
~  Ny(0,171(6y)).

Remark 1.1 Note that the asymptotic form of the log-likelihood given in part (vi) of theorem 1.2
is exactly the log-likelihood ratio for a normal mean model Ny(I(6)t,1(6p)). Also note that

1 1 1
t'z — 5tTI(eo)t = 5ZTrl(eo)Z -5 (t- I Y00)2)T1(00)(t — I74(60)2),
which is maximized as a function of ¢ by ¢ = I"'(6y)Z with maximum value Z7I~1(6y)Z/2.

Corollary 1 Suppose that A0-A4 hold and that v = v(F) = ¢(0) is differentiable at 0y € ©.
Then v, = q(6,,) satisfies

Vit = 1) = —= S L0010 + 0p(1) —a NO. 47 (80)1 7 (60) dl60).
=1

where L,(6o|X;) = ¢7(60) 12 (60)1(60]|X;) and v = q(6y).
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If the likelihood equations (2) are difficult to solve or have multiple roots, then it is possible to
use a one-step approximation. Suppose that 6,, is a preliminary estimator of 6 and set

(3) O =0 + fEl(gn)(n_ll(gnli)) :
The estimator 6, is sometimes called a one-step estimator.

Theorem 1.3 Suppose that A0-A4 hold, and that 0, satisfies n'/4(8,, — 0y) = 0,(1); note that the
latter holds if \/n(6, — 6p) = Op(1). Then

V0, —00) = IT7H(00) Zy + 0,(1) —4 Na(0,17(6p))

where Z, = n~/2 31" 1(6p| X3).

Proof. @ Theorem 1.2. (i) Existence and consistency. For a > 0, let
Qu={0€0: |6—0)=a}.

We will show that

(a) Po{l(0) < 1(bp) forall 0 €Q,} —1 as n — 0o.

This implies that L has a local maximum inside (J,. Since the likelihood equations must be satisfied
at a local maximum, it will follow that for any a > 0 with probability converging to 1 that the
likelihood equations have a solution 6, (a) within Q,; taking the root closest to 6y completes the
proof.

To prove (a), write

LU0) ~160)) = (0~ 00)"I(6) — (6~ 60" (—%‘I(e@) (0 —60)
d d d
%ZZZ 0; — 650) (O — ko) (61 — o) Z'ngl i) M (X5)
j=1k=11=1 i=1

(b) = Si1+ S+ 585
where, by A3(ii), 0 < |vy;w(x)| < 1. Furthermore, by A3(ii) and A4,

(c) S1 =50,
(@) 8 =y —5(0—00) T(60)(0 — 00),

where
(e) (0 — 00)TI(6)(6 — 60) > Ngl0 — Bo|* = Aga®

and \g is the smallest eigenvalue of I(6) (vecall that sup, (27 Az)/(z7z) = A1, inf, (27 Az) /(2T 2) =
Ag where A; > ... > Ay > 0 are the eigenvalues of A symmetric and positive definite), and

() S3—p —ZZZ (05 = 050) Ok — Ok0) (00 — O10) Bk (X1) Mg (X1) -
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Thus for any given €, a > 0, for n sufficiently large with probability larger than 1 —e€, for all § € Q,,

(2) 91| < da®,

(h) SQ < —)\da2/4,

and

i 1

(i) |1S5] < g(da)i” > mju = Bad®
7.kl

where mji = EM;,(X). Hence, combining (g), (h), and (i) yields

() sup (S1+ S2 +53) < sup |S1+ S3|+ sup So
0€Qq 0eqQ, 0€Qa

< da® + Ba® — %aQ

4
The right side of (j) is < 0 if a < \y/{4(B + d)}, and hence (a) holds.
On the set

< (B+d)a3—%a2:{(B+d)a—ﬁ}a2.

k) G, ={0, solves 1,(6,) =0 and |0, — 6| < €}
with Py(Gy) — 1 as n — oo, we have

o 0= %in@» - %iwo) (02 (B — 00)

where |07 — 6| < |0, — 0o|. Now from A4(i), (ii)

(m) Z,= %in(eo) = % > 1(60]X:) —a Na(0,1(60)) -
=1

Furthermore

()~ ia(8) = 1 (f0) + 0,(1) — T(80)

by using 0, —p 6o and A3(ii) together with Taylor’s theorem. Since matrix inversion is continuous
(at nonsingular matrices), it follows that the inverse

o (ki)

exists with high probability, and satisfies

1. .\ ! -
o) (-ain) -
Hence we can use (1) to write, on Gy,

(@  Valn—00) = I7'(00)Zn+o0p(1)
—q I7Y(00)Z ~ Ng4(0,17(p)).
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This proves (ii).
It also follows from (n) that

- 1o ~ ~
@ Vil 007 (1T6)) VG, ~ t0) ~a 2002 ~
and that, since () is continuous at 6y,

) Vn(On — 00)"I(0,)Vn(0n — 0) —a ZTT71(00)Z ~ X3

To prove (iii), we write, on the set G,

© 160) = 1) + @) 00— ) — Lt - 8,)7 (—%1(9:1)) ii(bo — 8,)

where |0} — 0| < ’571 — 0p|. Thus
2log Xn = Q{Z(gn) —1(6o)}
= 025l )" (~1501)) VA, ~ 00
= DII(06)Dy+0y(1),  with D, = v/n(B, — 0)
—q DTI(0)D where D ~ Ny(0,17%(6y))
~ X3

Finally, (v) is trivial since everything is evaluated at the fixed point 6y. O

Proof. Theorem 1.3. First note that

LB = tialo) + Ly (65)(F— 60)
= 1(00) + Op (1B~ o)
so that
—1 -1
@ (30E) = (-3hon) -+ 0,0 bl
and

(b) inin(én) = %in(eo) + %'l'n(eo)\/ﬁ@n — )
+ SV~ 00" (5 1 0) (@~ ).
Therefore it follows that
Vi(ln —00) = (@, — o) + <—%In(9n)> - inin(ﬁn)
— VB, — )

-1
- {(—%inwo)) +0p<1>|9n—eo|}
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{20+ L0V, - 00) + 30— 007 (11, 65)) @00

1. -1 _
- (—5171(00)) Zy+ Op(1)[Bn — 60|Zn
+ Op(l)_ln(HO)\/ﬁ‘gn - 00‘2

+ 0,30~ 00" (1 07)) @)

= I7Y(00)Zy + 0p(1) + Op(1)v/0|B, — bl
I7Y(00) Zn + op(1).

NIR 3|~

Here we used

= T (03B — 60)@, — 00)|

Bl

= ‘ > Vn(Onk — bok) Ot — 901)% Lkt (67]X)

k=1 1=1
< 3 o 2 - . 1 X,
< d*/n|f, — 6| ;n;\ 1k (05]X:)]
= 0p(1)v/n[fn — b0

since |0px — Oor| < |0 — Oo| for k=1,...,

d and |z| < dmaxi<peg|rr] <dS0_ |z O

Exercise 1.1 Show that K(P,Q) > 2H?(P, Q).



