
36-752 Spring 2018

Advanced Probability Overview

Lecture Notes Set 1: Course Overview, σ-Fields, and Measures

Instructor: Alessandro Rinaldo

Associated reading: Sec 1.1-1.4 of Ash and Doléans-Dade; Sec 1.1 and A.1 of Durrett.

1 Introduction

How is this course different from your earlier probability courses? There are some problems
that simply can’t be handled with finite-dimensional sample spaces and random variables
that are either discrete or have densities.

Example 1 Try to express the strong law of large numbers without using an infinite-dimensional

space. Oddly enough, the weak law of large numbers requires only a sequence of finite-

dimensional spaces, but the strong law concerns entire infinite sequences.

Example 2 Consider a distribution whose cumulative distribution function (cdf) increases

continuously part of the time but has some jumps. Such a distribution is neither discrete nor

continuous. How do you define the mean of such a random variable? Is there a way to treat

such distributions together with discrete and continuous ones in a unified manner?

General Measures Both of the above examples are accommodated by a generalization
of the theories of summation and integration. Indeed, summation becomes a special case of
the more general theory of integration. It all begins with a generalization of the concept of
“size” of a set.

Example 3 One way to measure the size of a set is to count its elements. All infinite sets

would have the same size (unless you distinguish different infinite cardinals).

Example 4 Special subsets of Euclidean spaces can be measured by length, area, volume,

etc. But what about sets with lots of holes in them? For example, how large is the set of

irrational numbers between 0 and 1?

We will use measures to say how large sets are. First, we have to decide which sets we will
measure.
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2 Set-Theoretic Preliminaries

Universe set. Let Ω be a universe set. Every set will be implicitly assumed to be a subset
of Ω and set theoretic operations (union, intersection and complement) are well defined only
with respect to Ω.

Power set. The power set of A, denoted with 2A is the set of all subsets of A (including
the empty set and A itself).

Monotone Sequences of Sets. A sequence (finite or infinite) of sets A1, A2, . . . such that
A1 ⊂ A2 ⊂ · · · is said to be increasing. The sequence has limit A =

⋃
nAn, in which case

we say that An increases to A, written An ↑ A. Similarly, if A1 ⊃ A2 ⊃ · · · , the sequence is
decreasing; it is said to decrease to its limit set A =

⋂
nAn, written An ↓ A. A sequence of

sets is monotone if it is either increasing or decreasing.

Exercise 1 Let a < b be real numbers and set An = [a− 1
n
, b− 1

n
]. Find

⋃
nAn. Similarly,

let Bn = (a + 1
n
, b + 1

n
). Find

⋂
Bn. This shows that an infinite union of closed sets needs

not be closed and an infinite (non-empty) intersection of open sets needs not be open. What

about arbitrary unions of open sets and intersections of closed sets?

DeMorgan Laws: If A1, A2, . . . is an arbitrary sequence, (
⋃

nAn)c =
⋂

nA
c
n and (

⋂
nAn)c =⋃

nA
c
n. Thus An ↓ A if and only if Ac

n ↑ Ac.

From union of sets to union of disjoint sets. Let A1, A2, . . . an arbitrary sequence of
sets in Ω. Then ⋃

n

An =
⋃
n

Bn,

where Bn = An ∩ Ac
n−1 ∩ . . . ∩ Ac

1, with A0 = ∅, and the Bn’s are disjoint.

Upper and lower limit of sequence of sets. For any arbitrary sequence A1, A2, . . ., its
limit superior is

lim sup
n

An =
∞⋂
n=1

∞⋃
k=n

Ak

and its limit inferior is

lim inf
n

An =
∞⋃
n=1

∞⋂
k=n

Ak.

Thus, ω ∈ lim supnAn iif for every n, ω ∈ Ak for some (in fact, infinitely many) k ≥ n.
Equivalently, ω ∈ lim supnAn if and only if ω ∈ An for infinitely many n’s, or infinitely
often.
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Conversely, ω ∈ lim infnAn iif, for some n, ω ∈ Ak for all k ≥ n. That is, ω ∈ lim infnAn iif
ω ∈ An for all but finitely many n’s, or eventually.

The sequence A1, A2, . . . has a limit A iif lim supnAn = lim infnAn = A. In case of monotone
(i.e. either increasing or decreasing) sequences, we recover the notion of limit introduced
above.

Exercise 2 It is instructive to compare the notion of limit superior and inferior to the

analogous notion for sequences, where for a sequence of real numbers x1, x2, . . . recall that

lim supn xn = infn supk≥n xk and lim infn xn = supn infk≥n xk. For a set A, let IA : Ω→ {0, 1}
be its indicator function:

IA(ω) =

{
1 if ω ∈ A,
0 if ω 6∈ A.

Then Ilim supn An = lim supn IAn and Ilim infn An = lim infn IAn .

Countable vs uncountable sets. A set A is finite if |A| < ∞, where |A| (or card(A)
or #A) is the number of elements or cardinality of A, and infinite otherwise. A better
distinction, which is very important in measure theory, is between sets that are countable
versus sets that are uncountable. A set A is countable if there exists a function φ : A → N
mapping the elements of A into the naturals that is injective. It is just a mathematical way
of expressing the fact that the set of natural numbers is “large enough” compared to A so
that all elements of A can be labeled using the naturals (or a subset thereof). A countable
set may be finite or infinite. An uncountable set is always infinite. A finite set if always
countable.

Exercise 3 Show that the cartesian product of two countable sets is countable. Conclude

that the cartesian product of finitely many countable sets is countable. Use this to show that

countable unions of countable sets if countable. On the other hand, the countable cartesian

product of countable sets is not countable. To see this, show that even the set of infinite

binary sequences is not countable.

Exercise 4 Use the result in the previous exercise to show that the power set of an infinite

countable set is not countable.

Example 5 (The unit interval is uncountable.) We have seen that the set of infinite

binary sequences is uncountable. The claim therefore will follow if we can show that each

number in (0, 1] can be expressed as an infinite binary sequence. Let T a mapping of the

interval Ω = (0, 1] into itself given by

Tω =

{
2ω if 0 < ω ≤ 1/2,

2ω − 1 if 1/2 < ω ≤ 1.
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Now define d1 on Ω by

d1(ω) =

{
0 if 0 < ω ≤ 1/2,

1 if 1/2 < ω ≤ 1,

and for any integer i > 1 and ω ∈ Ω, set di(ω) = d1(T i−1ω). Then, it can be shown that, for

all n ≥ 1,
n∑

i=1

di(ω)

2i
< ω ≤

n∑
i=1

di(ω)

2i
+

1

2n
, ∀ω ∈ Ω. (5)

As as result,

ω =
∞∑
i=1

di(ω)

2i
, ∀ω ∈ Ω.

This gives the dyadic representation of each ω in (0, 1] as a binary sequence (di(ω), i =

1, 2, . . .). Notice that if di(ω) = 0 for all i > n, then ω =
∑n

i=1
di(ω)

2i
, contradicting the strict

inequality in (5). Thus, the binary representation of each ω ∈ Ω does not terminate in 0’s

(equivalently, it contains an infinite number of 1’s). Thus, we have shown that Ω can be

represented as the set if infinite binary sequences that do not terminate in 0’s. Since (0, 1] is

in one-to-one correspondence with any interval on the real line of the form (a, b] with a < b,

we conclude that any interval on the real line has uncountably many points.

3 σ-fields

Definition 1 (fields and σ-fields) Let Ω be a set. A collection F of subsets of Ω is called

a field if it satisfies

• Ω ∈ F ,

• for each A ∈ F , AC ∈ F ,

• for all A1, A2 ∈ F , A1 ∪ A2 ∈ F .

A field F is a σ-field if, in addition, it satisfies

• for every sequence {Ak}∞k=1 in F ,
⋃∞

k=1 Ak ∈ F .

We will define measures on fields and σ-field’s.

Definition 2 (Measurable Space) A set Ω together with a σ-field F is called a measur-

able space (Ω,F), and the elements of F are called measurable sets .
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Example 6 (Intervals on R1) Let Ω = IR and define U to be the collection of all unions of

finitely many disjoint intervals of the form (a, b] or (−∞, b] or (a,∞) or (−∞,∞), together

with ∅. Then U is a field.

Example 7 (Power set) Let Ω be an arbitrary set. The collection of all subsets of Ω is a

σ-field, in fact the largest σ-field containing Ω. It is denoted 2Ω and is called the power set

of Ω.

Example 8 (Trivial σ-field) Let Ω be an arbitrary set. Let F = {Ω,∅}. This is the

trivial σ-field.

Exercise 6 Let F1, F2, . . . be classes of sets in a common space Ω such that Fn ⊂ Fn+1 for

each n. Show that if each Fn is a field, then ∪∞n=1Fn is also a field.

If each Fn is a σ-field, then is ∪∞n=1Fn also necessarily a σ-field? Think about the following

case: Ω is the set of nonnegative integers and Fn is the σ-field of all subsets of {0, 1, . . . , n}
and their complements.

Generated σ-fields A field is closed under finite set theoretic operations whereas a σ-field
is closed under countable set theoretic operations. In a problem dealing with probabilities,
one usually deals with a small class of subsets A, for example the class of subintervals of
(0, 1]. It is possible that if we perform countable operations on such a class A of sets, we
might end up operating on sets outside the class A. Hence, we would like to define a class
denoted by σ(A) in which we can safely perform countable set-theoretic operations. This
class σ(A) is called the σ-field generated by A, and it is defined as the intersection of all
the σ-fields containing A (exercise: show that this is a σ-field). σ(A) is the smallest σ-field
containing A.

Example 9 Let C = {A} for some nonempty A that is not itself Ω. Then σ(C) = {∅, A,AC ,Ω}.

Example 10 Let Ω = IR and let C be the collection of all intervals of the form (a, b]. Then

the field generated by C is U from Example 6 while σ(C) is larger.

Example 11 (Borel σ-field) Let Ω be a topological space and let C be the collection of open

sets. Then σ(C) is called the Borel σ-field. If Ω = IR, the Borel σ-field is the same as σ(C)
in Example 10. The Borel σ-field of subsets of IRk is denoted Bk.

Exercise 7 Give some examples of classes of sets C such that σ(C) = B1.

Exercise 8 Are there subsets of IR which are not in B1?
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4 Measures

Notation 12 (Extended Reals) The extended reals is the set of all real numbers together

with ∞ and −∞. We shall denote this set IR. The positive extended reals, denoted IR
+

is

(0,∞], and the nonnegative extended reals, denoted IR
+0

is [0,∞].

Definition 3 Let (Ω,F) be a measurable space. Let µ : F → IR
+0

satisfy

• µ(∅) = 0,

• for every sequence {Ak}∞k=1 of mutually disjoint elements of F , µ(
⋃∞

k=1 Ak) =
∑∞

k=1 µ(Ak).

Then µ is called a measure on (Ω,F) and (Ω,F , µ) is a measure space. If F is merely

a field, then a µ that satisfies the above two conditions whenever
⋃∞

k=1 Ak ∈ F is called a

measure on the field F .

Example 13 Let Ω be arbitrary with F the trivial σ-field. Define µ(∅) = 0 and µ(Ω) = c

for arbitrary c > 0 (with c =∞ possible).

Example 14 (Counting measure) Let Ω be arbitrary and F = 2Ω. For each finite subset

A of Ω, define µ(A) to be the number of elements of A. Let µ(A) =∞ for all infinite subsets.

This is called counting measure on Ω.

Definition 4 (Probability measure) Let (Ω,F , P ) be a measure space. If P (Ω) = 1,

then P is called a probability, (Ω,F , P ) is a probability space, and elements of F are called

events.

Sometimes, if the name of the probability P is understood or is not even mentioned, we will
denote P (E) by Pr(E) for events E.

Infinite measures pose a few unique problems. Some infinite measures are just like finite
ones.

Definition 5 (σ-finite measure) Let (Ω,F , µ) be a measure space, and let C ⊆ F . Sup-

pose that there exists a sequence {An}∞n=1 of elements of C such that µ(An) < ∞ for all n

and Ω =
⋃∞

n=1 An. Then we say that µ is σ-finite on C. If µ is σ-finite on F , we merely say

that µ is σ-finite.

Example 15 Let Ω = ZZ with F = 2Ω and µ being counting measure. This measure is

σ-finite. Counting measure on an uncountable space is not σ-finite.

Exercise 9 Prove the claims in Example 15.
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4.1 Basic properties of measures

There are several useful properties of measures that are worth knowing.

First, measures are countably subadditive in the sense that

µ

(
∞⋃
n=1

An

)
≤

∞∑
n=1

µ(An), (10)

for arbitrary sequences {An}∞n=1. The proof of this uses a standard trick for dealing with
countable sequences of sets. Let B1 = A1 and let Bn = An \

⋃n−1
i=1 Bi for n > 1. The Bn’s are

disjoint and have the same finite and countable unions as the An’s. The proof of Equation
10 relies on the additional fact that µ(Bn) ≤ µ(An) for all n.

Next, if µ(An) = 0 for all n, it follows that µ (
⋃∞

n=1An) = 0. This gets used a lot in proofs.
Similarly, if µ is a probability and µ(An) = 1 for all n, then µ (

⋂∞
n=1An) = 1.

Definition 6 (Almost sure/almost everywhere) Suppose that some statement about el-

ements of Ω holds for all ω ∈ AC where µ(A) = 0. Then we say that the statement holds

almost everywhere, denoted a.e. [µ]. If P is a probability, then almost everywhere is often

replaced by almost surely, denoted a.s. [P ].

Example 16 Let (Ω,F , P ) be a probability space. Let {Xn}∞n=1 be a sequence of functions

from Ω to IR. To say that Xn converges to X a.s. [P ] (denoted Xn
a.s.→ X) means that there

is a set A with P (A) = 0 and limn→∞Xn(ω) = X(ω) for all ω ∈ AC.

Proposition 11 (Linearity) If µ1, µ2, . . . are all measures on (Ω,F) and if {an}∞n=1 is a

sequence of positive numbers, then
∑∞

n=1 anµn is a measure on (Ω,F).

Exercise 12 Prove Proposition 11.

4.2 Monotone sequences of sets and limits of measure

Definition 7 (Monotone sequences of sets) Let (Ω,F , µ) be a measure space. A se-

quence {An}∞n=1 of elements of F is called monotone increasing if An ⊆ An+1 for each n. It

is monotone decreasing if An ⊇ An+1 for each n.

Lemma 17 Let (Ω,F , µ) be a measure space. Let {An}∞n=1 be a monotone sequence of

elements of F . Then limn→∞ µ(An) = µ (limn→∞An) if either of the following hold:

• the sequence is increasing,
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• the sequence is decreasing and µ(Ak) <∞ for some k.

If {An}∞n=1 is any sequence of measurable sets and µ is finite, then

µ
(

lim inf
n

An

)
≤ lim inf

n
µ(An) ≤ lim sup

n
µ(An) ≤ µ(lim sup

n
An).

In particular, if limnAn = A exists, then limn µ(An) = µ(A).

Proof: Define A∞ = limn→∞An. In the first case, write B1 = A1 and Bn = An \ An−1 for
n > 1. Then An =

⋃n
k=1 Bk for all n (including n =∞). Then µ(An) =

∑n
k=1 µ(Bk), and

µ
(

lim
n→∞

An

)
= µ(A∞) =

∞∑
k=1

µ(Bk) = lim
n→∞

n∑
k=1

µ(Bk) = lim
n→∞

µ(An).

In the second case, write Bn = An \ An+1 for all n ≥ k. Then, for all n > k,

Ak \ An =
n−1⋃
i=k

Bi,

Ak \ A∞ =
∞⋃
i=k

Bi.

By the first case,

lim
n→∞

µ(Ak \ An) = µ

(
∞⋃
i=k

Bi

)
= µ(Ak \ A∞).

Because An ⊆ Ak for all n > k and A∞ ⊆ Ak, it follows that

µ(Ak \ An) = µ(Ak)− µ(An),

µ(Ak \ A∞) = µ(Ak)− µ(A∞).

It now follows that limn→∞ µ(An) = µ(A∞).

As for the second claim, for each n ≥ 1 let Bn = ∩∞k=nAn and Cn ∪∞k=n An. Then, Bn →
lim infnAn and Cn → lim supnAn. Thus, for each n

µ(An) ≥ µ(Bn),

which implies that

lim inf
n

µ(An) ≥ lim inf
n

µ(Bn) = lim
n
µ(Bn) = µ(lim inf

n
An).

Similarly, the fact that µ(An) ≤ µ(Cn) for all n implies that and

lim sup
n

µ(An) ≤ lim sup
n

µ(Cn) = lim
n
µ(Cn) = µ(lim sup

n
An).

The claims easily follow.

Exercise 13 Construct a simple counterexample to show that the condition µ(Ak) < ∞ is

required in the second claim of Lemma 17.
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4.3 Uniqueness of Measures

There is a popular method for proving uniqueness theorems about measures. The idea is to
define a function µ on a convenient class C of sets and then prove that there can be at most
one extension of µ to σ(C).

Example 18 Suppose it is given that for any a ∈ IR,

P ((−∞, a]) =

∫ a

−∞

1√
2π

exp
(
−u2/2

)
du.

Does that uniquely define a unique probability measure on the class of Borel subsets of the

line, B1?

Definition 8 (π-system and λ-system) A collection A of subsets of Ω is a π-system if,

for all A1, A2 ∈ A, A1 ∩ A2 ∈ A. A class C is a λ-system if

• Ω ∈ C,

• for each A ∈ C, AC ∈ C,

• for each sequence {An}∞n=1 of disjoint elements of C,
⋃∞

n=1An ∈ C.

Example 19 The collection of all intervals of the form (−∞, a] is a π-system of subsets of

IR. So too is the collection of all intervals of the form (a, b] (together with ∅). The collection

of all sets of the form {(x, y) : x ≤ a, y ≤ b} is a π-system of subsets of IR2. So too is the

collection of all rectangles with sides parallel to the coordinate axes.

Some simple results about π-systems and λ-systems are the following.

Proposition 14 If Ω is a set and C is both a π-system and a λ-system, then C is a σ-field.

Proposition 15 Let Ω be a set and let Λ be a λ-system of subsets. If A ∈ Λ and A∩B ∈ Λ

then A ∩BC ∈ Λ.

Exercise 16 Prove Propositions 14 and 15.

Lemma 20 (π − λ theorem) Let Ω be a set and let Π be a π-system and let Λ be a λ-

system that contains Π. Then σ(Π) ⊆ Λ.
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Proof: Define λ(Π) to be the smallest λ-system containing Π. For each A ⊆ Ω, define GA
to be the collection of all sets B ⊆ Ω such that A ∩B ∈ λ(Π).

First, we show that GA is a λ-system for each A ∈ λ(Π). To see this, note that A∩Ω ∈ λ(Π),
so Ω ∈ GA. If B ∈ GA, then A ∩ B ∈ λ(Π), and Proposition 15 says that A ∩ BC ∈ λ(Π),
so BC ∈ GA. Finally, {Bn}∞n=1 ∈ GA with the Bn disjoint implies that A ∩ Bn ∈ λ(Π) with
A∩Bn disjoint, so their union is in λ(Π). But their union is A∩(

⋃∞
n=1 Bn). So

⋃∞
n=1Bn ∈ GA.

Next, we show that λ(Π) ⊆ GC for every C ∈ λ(Π). Let A,B ∈ Π, and notice that
A∩B ∈ Π, so B ∈ GA. Since GA is a λ-system containing Π, it must contain λ(Π). It follows
that A ∩ C ∈ λ(Π) for all C ∈ λ(Π). If C ∈ λ(Π), it then follows that A ∈ GC . So, Π ⊆ GC
for all C ∈ λ(Π). Since GC is a λ-system containing Π, it must contain λ(Π).

Finally, if A,B ∈ λ(Π), we just proved that B ∈ GA, so A ∩ B ∈ λ(Π) and hence λ(Π) is
also a π-system. By Proposition 14, λ(Π) is a σ-field containing Π and hence must contain
σ(Π). Since λ(Π) ⊆ Λ, the proof is complete.

The uniqueness theorem is the following.

Theorem 21 (Uniqueness theorem) Suppose that µ1 and µ2 are measures on (Ω,F) and

F = σ(Π), for a π-system Π. If µ1 and µ2 are both σ-finite on Π and they agree on Π, then

they agree on F .

Proof: First, let C ∈ Π be such that µ1(C) = µ2(C) < ∞, and define GC to be the
collection of all B ∈ F such that µ1(B ∩ C) = µ2(B ∩ C). It is easy to see that GC is a
λ-system that contains Π, hence it equals F by Lemma 20. (For example, if B ∈ GC ,

µ1(BC ∩ C) = µ1(C)− µ1(B ∩ C) = µ2(C)− µ2(B ∩ C) = µ2(BC ∩ C),

so BC ∈ GC .)

Since µ1 and µ2 are σ-finite, there exists a sequence {Cn}∞n=1 ∈ Π such that µ1(Cn) =
µ2(Cn) <∞, and Ω =

⋃∞
n=1Cn. (Since Π is only a π-system, we cannot assume that the Cn

are disjoint.) For each A ∈ F ,

µj(A) = lim
n→∞

µj

(
n⋃

i=1

[Ci ∩ A]

)
for j = 1, 2.

Since µj (
⋃n

i=1[Ci ∩ A]) can be written as a linear combination of values of µj at sets of the
form A ∩ C, where C ∈ Π is the intersection of finitely many of C1, . . . , Cn, it follows from
A ∈ GC that µ1 (

⋃n
i=1[Ci ∩ A]) = µ2 (

⋃n
i=1[Ci ∩ A]) for all n, hence µ1(A) = µ2(A).

Exercise 17 Return to Example 18. You should now be able to answer the question posed

there.

Exercise 18 Suppose that Ω = {a, b, c, d, e} and I tell you the value of P ({a, b}) and

P ({b, c}). For which subset of Ω do I need to define P (·) in order to have a unique ex-

tension of P to a σ-field of subsets of Ω?
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5 Lebesgue Measure and Caratheodory’s Extension The-

orem

Let F be a cdf (nondecreasing, right-continuous, limits equal 0 and 1 at −∞ and ∞ respec-
tively). Let U be the field in Example 6 (unions of finitely many disjoint intervals). Define
µ : U → [0, 1] by µ(A) =

∑n
k=1 F (bk) − F (ak) when A =

⋃n
k=1(ak, bk] and {(ak, bk]} are

disjoint. This set-function is well-defined and finitely additive.

Is µ countably additive as probabilities are supposed to be? That is, if A =
⋃∞

i=1 Ai where
the Ai’s are disjoint, each Ai is a union of finitely many disjoint intervals, and A itself is the
union of finitely many disjoint intervals (ak, bk] for k = 1, . . . , n, does µ(A) =

∑∞
i=1 µ(Ai)?

First, take the collection of intervals that go into all of the Ai’s and split them, if necessary,
so that each is a subset of at most one of the (ak, bk] intervals. Then apply the following
result to each (ak, bk].

Lemma 22 Let (a, b] =
⋃∞

k=1(ck, dk] with the (ck, dk]’s disjoint. Then F (b) − F (a) =∑∞
k=1 F (dk)− F (ck).

Proof: Since (a, b] ⊇
⋃n

k=1(ck, dk] for all n, it follows that F (b)−F (a) ≥
∑n

k=1 F (dk)−F (ck)
(because (ck, dk)’s are disjoint), hence F (b)−F (a) ≥

∑∞
k=1 F (dk)−F (ck). We need to prove

the opposite inequality.

Suppose first that both a and b are finite. Let ε > 0. For each k, there is ek > dk such that

F (dk) ≤ F (ek) ≤ F (dk) +
ε

2k
.

Also, there is f > a such that F (a) ≥ F (f) − ε. Now, the interval [f, b] is compact and
[f, b] ⊆

⋃∞
k=1(ck, ek). So there are finitely many (ck, ek)’s (suppose they are the first n) such

that [f, b] ⊆
⋃n

k=1(ck, ek). Now,

F (b)− F (a) ≤ F (b)− F (f) + ε ≤ ε+
n∑

k=1

F (ek)− F (ck) ≤ 2ε+
n∑

k=1

F (dk)− F (ck).

Here we have to work with finitely many (ck, ek)’s because we do not yet have countable
sub-additivity. It follows that F (b)−F (a) ≤ 2ε+

∑∞
k=1 F (dk)−F (ck). Since this is true for

all ε > 0, it is true for ε = 0.

If −∞ = a < b <∞, let g > −∞ be such that F (g) < ε. The above argument shows that

F (b)− F (g) ≤
∞∑
k=1

F (dk ∨ g)− F (ck ∨ g) ≤
∞∑
k=1

F (dk)− F (ck).

Since limg→−∞ F (g) = 0, it follows that F (b) ≤
∑∞

k=1 F (dk) − F (ck). Similar arguments
work when a < b =∞ and −∞ = a < b =∞.
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In Lemma 22 you can replace F by an arbitrary nondecreasing right-continuous function
with only a bit more effort. (See the supplement following at the end of this lecture.)

The function µ defined in terms of a nondecreasing right-continuous function is a measure
on the field U . There is an extension theorem that gives conditions under which a measure
on a field can be extended to a measure on the generated σ-field. Furthermore, the extension
is unique.

Example 23 (Lebesgue measure) Start with the function F (x) = x, form the measure

µ on the field U and extend it to the Borel σ-field. The result is called Lebesgue measure,

and it extends the concept of “length” from intervals to more general sets.

Example 24 Every distribution function for a random variable has a corresponding proba-

bility measure on the real line.

Theorem 25 (Caratheodory Extension) Let µ be a σ-finite measure on the field C of

subsets of Ω. Then µ has a unique extension to a measure on σ(C).

Exercise 19 In this exercise, we prove Theorem 25. Note that the uniqueness of the exten-

sion is a direct consequence of Theorem 21. We only need to prove the existence.

First, for each B ∈ 2Ω, define

µ∗(B) = inf
∞∑
i=1

µ(Ai), (20)

where the inf is taken over all {Ai}∞i=1 such that B ⊆
⋃∞

i=1 Ai and Ai ∈ C for all i. Since C
is a field, we can assume that the Ai’s are mutually disjoint without changing the value of

µ∗(B). Let

A = {B ∈ 2Ω : µ∗(C) = µ∗(C ∩B) + µ∗(C ∩BC), for all C ∈ 2Ω}.

Now take the following steps:

1. Show that µ∗ extends µ, i.e. that µ∗(A) = µ(A) for each A ∈ C.

2. Show that µ∗ is monotone and subadditive.

3. Show that C ⊆ A.

4. Show that A is a field.

5. Show that µ∗ is finitely additive on A.

6. Show that A is a σ-field.

7. Show that µ∗ is countably additive on A.
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5.1 Extension to Rk

The Borel σ-field on Rk, denoted with Bk, is generated by the class of hyper-rectangles of
the form

A =
{
x ∈ Rk : ai < xi ≤ bi, i = 1, . . . , k

}
= (a1, b1]× . . .× (ak, bk].

Above, −∞ ≤ ai < bi for all i = 1, . . . , k.

Let F : Rk → R be a function. Typically F takes values in [0, 1] or a bounded interval but
this is not necessary. For each hyper-rectangle A let

∆AF =
∑
v∈VA

sgn(v)F (v),

where VA = {a1, b1} × . . .× {ak, bk} is the set of vertices of A and, for any v ∈ VA, sgn(v) is
−1 or 1 depending on whether v has an odd or even number of a’s.

Assume that F is a distribution function, i.e. that it satisfies the properties:

1. F is right continuous: if xn ↓ x in Rk (meaning that x1 ≥ x2 ≥ . . . xk ≥ . . .→ x) then
F (xn) ↓ F (x);

2. F is non-decreasing: ∆AF ≥ 0 for all hyper-rectangles A.

Carathedory extension’s theorem allows for the general following construction of measure on
(Rk,Bk) from distribution functions.

Theorem 26 Let F be a distribution function in Rk and for a hyper-rectangle A, set µ(A) =

∆AF . Then, µ has a unique extension to a measure on Bk.

Example 27 The Lebesgue measure on (Rk,Bk) is the measure corresponding to the distri-

bution function

F (x) =
k∏

i=1

xi, x ∈ Rk.

It is can be seen that F is right-continuous (as it is continuous) and non-decreasing, since,

for any hyper-rectangle A = (a1, b1]× . . .× (ak, bk],

∆AF =
k∏

i=1

(bi − ai).

In particular, the Lebesgue measure of any Borel set A (not just a hyper-rectangle) coincides

with its volume.
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Supplement: Measures from Increasing Functions

Lemma 22 deals only with functions F that are cdf’s. Suppose that F is an unbounded
nondecreasing function that is continuous from the right. If−∞ < a < b <∞, then the proof
of Lemma 22 still applies. Suppose that (−∞, b] =

⋃∞
k=1(ck, dk] with b < ∞ nd all (ck, dk]

disjoint. Suppose that limx→−∞ F (x) = −∞. We want to show that
∑∞

k=1 F (dk)− F (ck) =
∞. If one ck = −∞, the proof is immediate, so assume that all ck > −∞. Then there must
be a subsequence {kj}∞j=1 such that limj→∞ ckj = −∞. For each j, let {(c′j,n, d′j,n]}∞n=1 be the
subsequence of intervals that cover (ckj , b]. For each j, the proof of Lemma 22 applies to
show that

F (b)− F (ckj) =
∞∑
n=1

F (d′j,n)− F (c′j,n). (21)

As j → ∞, the left side of Equation 21 goes to ∞ while the right side eventually includes
every interval in the original collection.

A similar proof works for an interval of the form (a,∞) when limx→∞ F (x) =∞. A combi-
nation of the two works for (−∞,∞).
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